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We are interested in the action of G on the infinite-dimensional affine
space A. To get a picture of what to expect we study a finite-dimensional
analogue:

let V be a complex vector space with a Hermitian inner product
(write || · || for the corresponding norm),

let S1 → U(V ) be an action of the circle by unitary matrices,

let C∗ → GL(V ) be the complexification of this action.

We want to understand the quotient space V /C∗ but this can be quite
unpleasant. Next time we will complexify the action of G on A and see
what this has to do with anything.
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Example

Consider λ ∈ C∗ acting on C2 by (x , y) 7→ (λ−1x , λy). The orbits are:

the conics xy = c 6= 0 ∈ C,

the axes y = 0, x 6= 0, x = 0, y 6= 0,

the origin.

Since the axes come arbitrarily close to 0 it is clear that the quotient
topology on the orbit space is non-Hausdorff. However, C2 \ {axes}/C∗ is
Hausdorff, in fact it’s homeomorphic to C.
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More generally we want to form Hausdorff quotients by considering only
the orbits which are closed sets.

Definition

A point v ∈ V is stable if its orbit under C∗ is closed.

Theorem (Kempf-Ness)

A point v is stable if and only if the function || · ||2 restricted to its orbit
attains its minimum.

We can think of this function as a function on pv : C∗ → R, given by
pv (g) = ||g(v)||2. Note that since the norm is U(V )-invariant the function

pv is S1-invariant and descends to a function on (C∗/S1,×)
log→ (R,+)

pv (x) = ||ex(v)||2
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In our example above ex(v1, v2) = (e−xv1, e
xv2) so

pv (x) = ||v1||2e−2x + ||v2||2e2x . We see that this has a minimum at

1

2
(log(||v1||)− log(||v2||))

if both v1 and v2 are nonzero, at 0 if v = 0 and the minimum is not
attained along the two punctured axes. In fact this example is
representative.
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The S1-action is reducible and so V splits as an orthogonal direct sum
V1 ⊕ · · · ⊕ Vn of 1-dimensional representations where S1 acts on Vm as
vm 7→ λjmvm for some weight jm (in our example the weights were −1, 1).
Therefore pv (x) =

∑
m ||vm||2e2jmx =

∑∞
k=−∞ ake

kx (where only finitely
many coefficients are nonzero). We divide our analysis into three cases

Type I: ak = 0 for all k 6= 0. In this case the minimum is obviously
attained and the orbit is obviously closed since jm = 0 so the action
fixes v .

Type II: ak = 0 for all k < 0 (resp. k > 0) and ak 6= 0 for some k > 0
(resp. k < 0). In this case the minimum is obviously not attained and
the orbit is obviously not closed since ex(v) tends to an orbit of the
first type as x → −∞ (resp. ∞).

Type III: there is a k > 0 and a k ′ < 0 such that ak 6= 0 and ak ′ 6= 0.
In this case the minimum is obviously attained (just do the calculus).
We will now show that this implies v is stable.
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Lemma

If v is not stable then pv does not attain its minimum.

Proof.

If v is not stable then its orbit is not closed so there exists w ∈ V such
that w ∈ C∗(v) but w 6∈ C∗(v), so either w = limx→±∞ ex(v). The
corresponding limit limx→±∞ pv (x) = pv (w) is finite and hence the jm are
either all nonpositive or all nonnegative. Since w 6= v there must be one
jm which is nonzero. It’s now easy to see that the function pv (x) is of type
II and hence does not attain its minimum.

This completes our proof of the Kempf-Ness theorem.
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To understand the space of stable points it’s therefore important to
understand the critical points of pv and what better way than by
differentiating it?

dpv
dx

= 2
n∑

m=1

jm||vm||2e2jmx

Suppose that v is stable and that the minimum occurs at x = x0. WLOG
x0 = 0 because we can always replace v by e−x0v . Therefore the orbit of a
stable vector contains a zero of the function

µ =
n∑

m=1

jm||vm||2 : V → R

In fact it contains a whole S1 of such zeros since µ is S1-invariant.

Theorem

Let V s denote the space of stable vectors under the action of C∗. Then

V s/C∗ = µ−1(0)/S1.
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Let V be a vector space and Q : V ⊗ V → R a nondegenerate bilinear
form. Then we can translate 1-forms χ into vector fields X by defining

χ(Y ) = Q(X ,Y ) for all Y ∈ TV

In particular if f : V → R is a function then df ∈ Ω1(V ) is a 1-form and it
yields a vector field Qgrad(f ) by df (Y ) = Q(Qgrad(f ),Y ).

If Q is positive definite and symmetric this gives exactly the gradient
of f and

LieQgrad(f )f = |Qgrad(f )|2 > 0

If Q is instead antisymmetric then Qgrad(f ) behaves very differently
and

LieQgrad(f )f = 0

so f is preserved by this flow.
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For example take the function f (x , y) = x2 + y2 on R2 and take
Q = dx ∧ dy . Then

Qgrad(f ) = −y∂x + x∂y

is the vector field generating a rotation around the origin. This preserves
the level sets (constant radius). In general this procedure works very well
on symplectic manifolds (Q a nondegenerate, alternating, closed 2-form)
since there

LieQgrad(f )Q = dιQgrad(f )Q = ddf = 0

We call f the Hamiltonian generating Qgrad(f ) and observe that the
Hamiltonian is preserved by the Hamiltonian flow.
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Now return to our example where Vm = C is a 1-dimensional
representation of S1 with weight jm. This is generated by a vector field
which is just generated by the Hamiltonian jmQgrad(||vm||2) (as in the
previous slide) where

Q = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

is the imaginary part of the Hermitian structure on V . This is precisely the
summand of µ corresponding to this summand of V . Adding up the
Hamiltonians on V =

⊕n
m=1 Vm gives µ and this Hamiltonian generates

precisely our original action of S1 on V . We call µ a moment map for the
circle action.
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Next time we will see a moment map for the action of G on A, we will
complexify the action of G and we will state a theorem analogous to the
Kempf-Ness theorem in this infinite-dimensional setting. This is the
Narasimhan-Seshadri theorem.
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