Lecture 8: The Kempf-Ness theorem

Jonathan Evans

13th October 2011

Jonathan Evans ()

Lecture 8: The Kempf-Ness theorem

13th October 2011 1 / 12

< 47 ▶ <

3

We are interested in the action of \mathcal{G} on the infinite-dimensional affine space \mathcal{A} . To get a picture of what to expect we study a finite-dimensional analogue:

- let V be a complex vector space with a Hermitian inner product (write || · || for the corresponding norm),
- let $S^1 o U(V)$ be an action of the circle by unitary matrices,
- let $\mathbb{C}^* \to GL(V)$ be the complexification of this action.

We want to understand the quotient space V/\mathbb{C}^* but this can be quite unpleasant. Next time we will complexify the action of \mathcal{G} on \mathcal{A} and see what this has to do with anything.

() < </p>

Example

Consider $\lambda \in \mathbb{C}^*$ acting on \mathbb{C}^2 by $(x, y) \mapsto (\lambda^{-1}x, \lambda y)$. The orbits are:

- the conics $xy = c \neq 0 \in \mathbb{C}$,
- the axes $y = 0, x \neq 0$, $x = 0, y \neq 0$,
- the origin.

Since the axes come arbitrarily close to 0 it is clear that the quotient topology on the orbit space is non-Hausdorff. However, $\mathbb{C}^2 \setminus \{axes\}/\mathbb{C}^*$ is Hausdorff, in fact it's homeomorphic to \mathbb{C} .

More generally we want to form Hausdorff quotients by considering only the orbits which are closed sets.

Definition

A point $v \in V$ is stable if its orbit under \mathbb{C}^* is closed.

Theorem (Kempf-Ness)

A point v is stable if and only if the function $|| \cdot ||^2$ restricted to its orbit attains its minimum.

We can think of this function as a function on $p_v : \mathbb{C}^* \to \mathbb{R}$, given by $p_v(g) = ||g(v)||^2$. Note that since the norm is U(V)-invariant the function p_v is S^1 -invariant and descends to a function on $(\mathbb{C}^*/S^1, \times) \xrightarrow{\log} (\mathbb{R}, +)$

$$p_v(x) = ||e^x(v)||^2$$

In our example above $e^x(v_1, v_2) = (e^{-x}v_1, e^xv_2)$ so $p_v(x) = ||v_1||^2 e^{-2x} + ||v_2||^2 e^{2x}$. We see that this has a minimum at

$$\frac{1}{2}(\log(||v_1||) - \log(||v_2||))$$

if both v_1 and v_2 are nonzero, at 0 if v = 0 and the minimum is not attained along the two punctured axes. In fact this example is representative.

The S^1 -action is reducible and so V splits as an orthogonal direct sum $V_1 \oplus \cdots \oplus V_n$ of 1-dimensional representations where S^1 acts on V_m as $v_m \mapsto \lambda^{j_m} v_m$ for some weight j_m (in our example the weights were -1, 1). Therefore $p_V(x) = \sum_m ||v_m||^2 e^{2j_m x} = \sum_{k=-\infty}^{\infty} a_k e^{kx}$ (where only finitely many coefficients are nonzero). We divide our analysis into three cases

- Type I: $a_k = 0$ for all $k \neq 0$. In this case the minimum is obviously attained and the orbit is obviously closed since $j_m = 0$ so the action fixes v.
- Type II: a_k = 0 for all k < 0 (resp. k > 0) and a_k ≠ 0 for some k > 0 (resp. k < 0). In this case the minimum is obviously not attained and the orbit is obviously not closed since e^x(v) tends to an orbit of the first type as x → -∞ (resp. ∞).
- Type III: there is a k > 0 and a k' < 0 such that a_k ≠ 0 and a_{k'} ≠ 0. In this case the minimum is obviously attained (just do the calculus). We will now show that this implies v is stable.

イロン イヨン イヨン イヨン

Lemma

If v is not stable then p_v does not attain its minimum.

Proof.

If v is not stable then its orbit is not closed so there exists $w \in V$ such that $w \in \overline{\mathbb{C}^*(v)}$ but $w \notin \mathbb{C}^*(v)$, so either $w = \lim_{x \to \pm \infty} e^x(v)$. The corresponding limit $\lim_{x \to \pm \infty} p_v(x) = p_v(w)$ is finite and hence the j_m are either all nonpositive or all nonnegative. Since $w \neq v$ there must be one j_m which is nonzero. It's now easy to see that the function $p_v(x)$ is of type II and hence does not attain its minimum.

This completes our proof of the Kempf-Ness theorem.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

To understand the space of stable points it's therefore important to understand the critical points of p_v and what better way than by differentiating it?

$$\frac{dp_{v}}{dx} = 2\sum_{m=1}^{n} j_{m} ||v_{m}||^{2} e^{2j_{m}x}$$

Suppose that v is stable and that the minimum occurs at $x = x_0$. WLOG $x_0 = 0$ because we can always replace v by $e^{-x_0}v$. Therefore the orbit of a stable vector contains a zero of the function

$$\mu = \sum_{m=1}^{n} j_m ||\mathbf{v}_m||^2 : \mathbf{V} \to \mathbb{R}$$

In fact it contains a whole S^1 of such zeros since μ is S^1 -invariant.

Theorem

Let V^s denote the space of stable vectors under the action of \mathbb{C}^* . Then

$$V^{s}/\mathbb{C}^{*} = \mu^{-1}(0)/S^{1}.$$

Let V be a vector space and $Q: V \otimes V \to \mathbb{R}$ a nondegenerate bilinear form. Then we can translate 1-forms χ into vector fields X by defining

 $\chi(Y) = Q(X, Y)$ for all $Y \in TV$

In particular if $f : V \to \mathbb{R}$ is a function then $df \in \Omega^1(V)$ is a 1-form and it yields a vector field $\operatorname{Qgrad}(f)$ by $df(Y) = Q(\operatorname{Qgrad}(f), Y)$.

• If Q is positive definite and symmetric this gives exactly the gradient of f and

$$\operatorname{Lie}_{\operatorname{Qgrad}(f)} f = |\operatorname{Qgrad}(f)|^2 > 0$$

• If Q is instead antisymmetric then $\operatorname{Qgrad}(f)$ behaves very differently and

$$\operatorname{Lie}_{\operatorname{Qgrad}(f)} f = 0$$

so f is preserved by this flow.

イロト イポト イヨト イヨト

For example take the function $f(x,y) = x^2 + y^2$ on \mathbb{R}^2 and take $Q = dx \wedge dy$. Then

$$\operatorname{Qgrad}(f) = -y\partial_x + x\partial_y$$

is the vector field generating a rotation around the origin. This preserves the level sets (constant radius). In general this procedure works very well on *symplectic manifolds* (Q a nondegenerate, alternating, *closed* 2-form) since there

$$\operatorname{Lie}_{\operatorname{Qgrad}(f)} Q = d\iota_{\operatorname{Qgrad}(f)} Q = ddf = 0$$

We call f the Hamiltonian generating Qgrad(f) and observe that the Hamiltonian is preserved by the Hamiltonian flow.

イロト イポト イヨト イヨト

Now return to our example where $V_m = \mathbb{C}$ is a 1-dimensional representation of S^1 with weight j_m . This is generated by a vector field which is just generated by the Hamiltonian $j_m \text{Qgrad}(||v_m||^2)$ (as in the previous slide) where

$$Q = dx_1 \wedge dy_1 + \dots + dx_n \wedge dy_n$$

is the imaginary part of the Hermitian structure on V. This is precisely the summand of μ corresponding to this summand of V. Adding up the Hamiltonians on $V = \bigoplus_{m=1}^{n} V_m$ gives μ and this Hamiltonian generates precisely our original action of S^1 on V. We call μ a moment map for the circle action.

Next time we will see a moment map for the action of \mathcal{G} on \mathcal{A} , we will complexify the action of \mathcal{G} and we will state a theorem analogous to the Kempf-Ness theorem in this infinite-dimensional setting. This is the Narasimhan-Seshadri theorem.