Lecture 8: The Kempf-Ness theorem

Jonathan Evans

13th October 2011

We are interested in the action of \mathcal{G} on the infinite-dimensional affine space \mathcal{A}. To get a picture of what to expect we study a finite-dimensional analogue:

- let V be a complex vector space with a Hermitian inner product (write \|•\| for the corresponding norm),
- let $S^{1} \rightarrow U(V)$ be an action of the circle by unitary matrices,
- let $\mathbb{C}^{*} \rightarrow G L(V)$ be the complexification of this action.

We want to understand the quotient space V / \mathbb{C}^{*} but this can be quite unpleasant. Next time we will complexify the action of \mathcal{G} on \mathcal{A} and see what this has to do with anything.

Example

Consider $\lambda \in \mathbb{C}^{*}$ acting on \mathbb{C}^{2} by $(x, y) \mapsto\left(\lambda^{-1} x, \lambda y\right)$. The orbits are:

- the conics $x y=c \neq 0 \in \mathbb{C}$,
- the axes $y=0, x \neq 0, x=0, y \neq 0$,
- the origin.

Since the axes come arbitrarily close to 0 it is clear that the quotient topology on the orbit space is non-Hausdorff. However, $\mathbb{C}^{2} \backslash\{$ axes $\} / \mathbb{C}^{*}$ is Hausdorff, in fact it's homeomorphic to \mathbb{C}.

More generally we want to form Hausdorff quotients by considering only the orbits which are closed sets.

Definition

A point $v \in V$ is stable if its orbit under \mathbb{C}^{*} is closed.

Theorem (Kempf-Ness)

A point v is stable if and only if the function $\|\cdot\|^{2}$ restricted to its orbit attains its minimum.

We can think of this function as a function on $p_{v}: \mathbb{C}^{*} \rightarrow \mathbb{R}$, given by $p_{v}(g)=\|g(v)\|^{2}$. Note that since the norm is $U(V)$-invariant the function p_{v} is S^{1}-invariant and descends to a function on $\left(\mathbb{C}^{*} / S^{1}, \times\right) \xrightarrow{\log }(\mathbb{R},+)$

$$
p_{v}(x)=\left\|e^{x}(v)\right\|^{2}
$$

In our example above $e^{x}\left(v_{1}, v_{2}\right)=\left(e^{-x} v_{1}, e^{x} v_{2}\right)$ so
$p_{v}(x)=\left\|v_{1}\right\|^{2} e^{-2 x}+\left\|v_{2}\right\|^{2} e^{2 x}$. We see that this has a minimum at

$$
\frac{1}{2}\left(\log \left(\left\|v_{1}\right\|\right)-\log \left(\left\|v_{2}\right\|\right)\right)
$$

if both v_{1} and v_{2} are nonzero, at 0 if $v=0$ and the minimum is not attained along the two punctured axes. In fact this example is representative.

The S^{1}-action is reducible and so V splits as an orthogonal direct sum $V_{1} \oplus \cdots \oplus V_{n}$ of 1-dimensional representations where S^{1} acts on V_{m} as $v_{m} \mapsto \lambda^{j_{m}} v_{m}$ for some weight j_{m} (in our example the weights were $-1,1$). Therefore $p_{v}(x)=\sum_{m}\left\|v_{m}\right\|^{2} e^{2 j_{m} x}=\sum_{k=-\infty}^{\infty} a_{k} e^{k x}$ (where only finitely many coefficients are nonzero). We divide our analysis into three cases

- Type I: $a_{k}=0$ for all $k \neq 0$. In this case the minimum is obviously attained and the orbit is obviously closed since $j_{m}=0$ so the action fixes v.
- Type II: $a_{k}=0$ for all $k<0$ (resp. $k>0$) and $a_{k} \neq 0$ for some $k>0$ (resp. $k<0$). In this case the minimum is obviously not attained and the orbit is obviously not closed since $e^{x}(v)$ tends to an orbit of the first type as $x \rightarrow-\infty$ (resp. ∞).
- Type III: there is a $k>0$ and a $k^{\prime}<0$ such that $a_{k} \neq 0$ and $a_{k^{\prime}} \neq 0$. In this case the minimum is obviously attained (just do the calculus). We will now show that this implies v is stable.

Lemma

If v is not stable then p_{v} does not attain its minimum.

Proof.

If v is not stable then its orbit is not closed so there exists $w \in V$ such that $w \in \overline{\mathbb{C}^{*}(v)}$ but $w \notin \mathbb{C}^{*}(v)$, so either $w=\lim _{x \rightarrow \pm \infty} e^{x}(v)$. The corresponding limit $\lim _{x \rightarrow \pm \infty} p_{v}(x)=p_{v}(w)$ is finite and hence the j_{m} are either all nonpositive or all nonnegative. Since $w \neq v$ there must be one j_{m} which is nonzero. It's now easy to see that the function $p_{v}(x)$ is of type II and hence does not attain its minimum.

This completes our proof of the Kempf-Ness theorem.

To understand the space of stable points it's therefore important to understand the critical points of p_{v} and what better way than by differentiating it?

$$
\frac{d p_{v}}{d x}=2 \sum_{m=1}^{n} j_{m}\left\|v_{m}\right\|^{2} e^{2 j_{m} x}
$$

Suppose that v is stable and that the minimum occurs at $x=x_{0}$. WLOG $x_{0}=0$ because we can always replace v by $e^{-x_{0}} v$. Therefore the orbit of a stable vector contains a zero of the function

$$
\mu=\sum_{m=1}^{n} j_{m}\left\|v_{m}\right\|^{2}: V \rightarrow \mathbb{R}
$$

In fact it contains a whole S^{1} of such zeros since μ is S^{1}-invariant.

Theorem

Let V^{s} denote the space of stable vectors under the action of \mathbb{C}^{*}. Then

$$
V^{s} / \mathbb{C}^{*}=\mu^{-1}(0) / S^{1} .
$$

Let V be a vector space and $Q: V \otimes V \rightarrow \mathbb{R}$ a nondegenerate bilinear form. Then we can translate 1 -forms χ into vector fields X by defining

$$
\chi(Y)=Q(X, Y) \text { for all } Y \in T V
$$

In particular if $f: V \rightarrow \mathbb{R}$ is a function then $d f \in \Omega^{1}(V)$ is a 1-form and it yields a vector field $\operatorname{Qgrad}(f)$ by $d f(Y)=Q(\operatorname{Qgrad}(f), Y)$.

- If Q is positive definite and symmetric this gives exactly the gradient of f and

$$
\operatorname{Lie}_{\operatorname{Qgrad}(f)} f=|\operatorname{Qgrad}(f)|^{2}>0
$$

- If Q is instead antisymmetric then $\operatorname{Qgrad}(f)$ behaves very differently and

$$
\operatorname{Lie}_{\operatorname{Qgrad}(f)} f=0
$$

so f is preserved by this flow.

For example take the function $f(x, y)=x^{2}+y^{2}$ on \mathbb{R}^{2} and take $Q=d x \wedge d y$. Then

$$
\operatorname{Qgrad}(f)=-y \partial_{x}+x \partial_{y}
$$

is the vector field generating a rotation around the origin. This preserves the level sets (constant radius). In general this procedure works very well on symplectic manifolds (Q a nondegenerate, alternating, closed 2-form) since there

$$
\operatorname{Lie}_{\operatorname{Qgrad}(f)} Q=d \iota_{\operatorname{Qgrad}(f)} Q=d d f=0
$$

We call f the Hamiltonian generating $\operatorname{Qgrad}(f)$ and observe that the Hamiltonian is preserved by the Hamiltonian flow.

Now return to our example where $V_{m}=\mathbb{C}$ is a 1-dimensional representation of S^{1} with weight j_{m}. This is generated by a vector field which is just generated by the Hamiltonian $j_{m} \operatorname{Qgrad}\left(\left\|v_{m}\right\|^{2}\right)$ (as in the previous slide) where

$$
Q=d x_{1} \wedge d y_{1}+\cdots+d x_{n} \wedge d y_{n}
$$

is the imaginary part of the Hermitian structure on V. This is precisely the summand of μ corresponding to this summand of V. Adding up the Hamiltonians on $V=\bigoplus_{m=1}^{n} V_{m}$ gives μ and this Hamiltonian generates precisely our original action of S^{1} on V. We call μ a moment map for the circle action.

Next time we will see a moment map for the action of \mathcal{G} on \mathcal{A}, we will complexify the action of \mathcal{G} and we will state a theorem analogous to the Kempf-Ness theorem in this infinite-dimensional setting. This is the Narasimhan-Seshadri theorem.

