Lecture 6: Principal bundles

Jonathan Evans

6th October 2010

Jonathan Evans ()

Lecture 6: Principal bundles

6th October 2010 1 / 12

3

We are in the process of defining principal G-bundles and connections on them. The last thing we said was:

Definition

A connection is a G-equivariant choice of horizontal space \mathcal{H}_p in each T_pP , i.e. a subspace which projects via π_* to $T_{\pi(p)}M$ and such that $g_*(\mathcal{H}_p) = \mathcal{H}_{g(p)}$ for all $g \in G$. We write \tilde{X} for the unique horizontal vector field which projects along π_* to the vector field X on M.

We see that this is the same as a g-valued 1-form α on P, which projects tangent vectors onto their vertical part (i.e. ker $\alpha = \mathcal{H}$) and takes vertical vectors $v \in \mathfrak{g}$ to themselves. *G*-equivariance of \mathcal{H} translates into the equivariance

$$\alpha(g_*v) = g_*\alpha(v)$$

of α .

In the case of U(1)-bundles we saw that the difference of two connections \mathcal{H} and \mathcal{H}' is a 1-form on M. This has an analogue for G-bundles. Since both \mathcal{H}_p and \mathcal{H}'_p project bijectively to $T_{\pi(p)}M$ we can write \mathcal{H}'_p as the graph of a g-valued matrix $A : \mathcal{H}_p \to \mathfrak{g}$. In other words we can think of $A : \pi^* TM \to P \times \mathfrak{g}$. Equivariance of \mathcal{H}' now implies

$$A(g_*v) = g_*A(v)$$
 for all $g \in G$

We want to think of A as a 1-form a living on M, so we want to divide π^*TM and $P \times \mathfrak{g}$ by G.

イロト イポト イヨト イヨ

Recall

Remember that on a Lie group, the tangent space at the identity e (the Lie algebra g) is naturally identified with the space of left-invariant vector fields ξ_g such that

$$\xi_g = (L_g)_* \xi_e$$

where L_g denotes left-multiplication by g.

The fibre of our bundle $P \times \mathfrak{g} \subset TP$ over a point $p \in P$ is precisely the space of left-invariant vertical vector fields on the fibre $P_{\pi(p)}$. There is a bundle over M whose fibre at q is the bundle of left-invariant vertical vector fields on the fibre P_q . This is clearly the bundle in which this putative 1-form a takes its values since $a(v) = A(\tilde{v})$ is a G-equivariant vertical vector field! Left-invariant is the same as G-equivariant:

$$(L_g^*A)(\tilde{v}) = A(g_*\tilde{v}) = g_*A(\tilde{v}) = (L_g)_*A(\tilde{v})$$

We want a better description of this bundle so we define the notion of associated vector bundle.

Associated bundles

You may be more used to/comfortable with vector bundles than principal bundles. In this case you'll be happy to know that there's a nice way to translate between the two. Given a representation V of G (if you like just bear in mind the case G = U(n) acting on \mathbb{C}^n) and a principal G-bundle P you automatically get a vector bundle

$$P imes_{G} V$$

where the notation means that the total space of the bundle is $P \times V$ divided by the group action of G by

$$(p, v) \mapsto (pg, g^{-1}v)$$

This inherits a projection $\pi: P \times_G V \to M$.

イロト イポト イラト イラト

Lemma

The fibre $\pi^{-1}(m)$ can be identified with the vector space V by picking $p \in P_m$ and sending

$$v\mapsto [(p,v)]$$

Proof.

Surjectivity: If $[(q, w)] \in \pi^{-1}(m)$ then p = qg for some $g \in G$ so $(q, w) \sim (p, g^{-1}w)$. Injectivity: if $(p, v) \sim (p, w)$ then there is a $g \in G$ such that p = pg, $v = g^{-1}w$, however the *G*-action on *P* is free so g = 1.

イロト イポト イヨト イヨト

5 9 9 9 P

Lemma

Sections of the bundle associated to P via a representation ρ correspond 1-1 with maps $f : P \rightarrow V$ satisfying

$$f(pg) = \rho(g^{-1})f(p)$$

Proof.

Given such a map, form the map $F = id \times f : P \to P \times V$. This is G-equivariant with respect to the usual G-action P and the diagonal G-action on $P \times V$ and hence it descends to a section $M \to P \times_G V$. Conversely a section σ lifts to a G-equivariant map $F : P \to P \times V$ and since $\pi \circ \sigma = id$, the map F has the form $id \times f$.

イロト イポト イヨト イヨト

One can recover P as the bundle of frames in the vector bundle $P \times_G V$. A frame is just a *G*-equivariant identification of the fibre with V (i.e. a choice of basis! The basis is orthonormal, unitary or whatever else *G* may be) which is precisely what we picked to see that the fibre of $P \times_G V$ over *m* was isomorphic to *V*.

Lemma

The bundle over M we described earlier, whose fibre over $q \in M$ is the space of left-invariant vertical vector fields on P_q , is associated to P via the adjoint action of G on g

Recall that the adjoint action of G on itself is $\operatorname{Ad}_g(h) = ghg^{-1}$ and the adjoint action on the Lie algebra is $\operatorname{ad}_g = d\operatorname{Ad}_g = dR_{g^{-1}} \circ dL_g$ where R_g and L_g are the right and left actions of G on itself.

(日) (四) (三) (三)

Proof.

To each $\xi \in \mathfrak{g}$ associate the vector field $V(\xi)_p = \frac{d}{dt}\Big|_{t=0} (pe^{t\xi})$. If we write R_g for the right action of G on itself then

$$(R_g)_* V(\xi)_p = \left. \frac{d}{dt} \right|_{t=0} \left(p e^{t\xi} g \right)$$
$$= \left. \frac{d}{dt} \right|_{t=0} \left(p g \left(g^{-1} e^{t\xi} g \right) \right)$$
$$= V(\operatorname{ad}_{g^{-1}}\xi)_{pg}.$$

Note that a section of the bundle associated to P via the representation $\rho: G \to Aut(V)$ lifts to a map $f: P \to V$ satisfying

$$R_g^*f = \rho(g^{-1})f.$$

Outcome

The difference of two connections on P is an $\operatorname{ad}(P)$ -valued 1-form on M, where $\operatorname{ad}(P)$ is the vector bundle associated to P via the representation $\operatorname{ad}: G \to \operatorname{Aut}(\mathfrak{g})$. If we fix a connection ∇ then for any $\operatorname{ad}(P)$ -valued 1-form A we write $\nabla_A = \nabla + A$ and we observe that the space of connections \mathcal{A} is an affine space modelled on the space of $\operatorname{ad}(P)$ -valued 1-forms. In particular it is contractible!

イロト イポト イヨト イヨト

Differentiating sections of associated bundles

A connection on P induces a connection on the vector bundle Eassociated to some representation $\rho: G \to \operatorname{Aut}(V)$. Recall that a connection on a vector bundle is just a differential operator on sections σ which obeys the Leibniz rule with respect to functions f:

$$\nabla_X(f\sigma) = df(X)\sigma + f\nabla_X\sigma$$

Sections of the associated bundle are in 1-1 correspondence with G-equivariant maps $\sigma: P \to V$ and we can define

$$\nabla_X \sigma = d\sigma(\tilde{X}) = \mathrm{Lie}_{\tilde{X}} \sigma$$

(The last equality holds by Cartan's formula, considering σ as a "V-tuple" of functions).

A step back

What I have written is actually extremely confusing (for a change...). Let's deconstruct it in the case of the trivial U(1)-bundle and the associated complex vector bundle E (with the usual action of U(1) on \mathbb{C}). Here $P = M \times U(1)$, $E = M \times \mathbb{C}$ and a section is the same as a map $s : M \to \mathbb{C}$. The corresponding map $\sigma : P \to \mathbb{C}$ is NOT just $s \circ \pi$, rather it is

$$\sigma(m, e^{i\theta}) \mapsto e^{-i\theta}s(m)$$

Now if abla = d is the trivial connection, $ilde{X} = (X, 0)$ so

$$\nabla_X \sigma = e^{-i\theta} ds(X)$$

If abla = d + iA then $ilde{X} = (X, -A(X))$ so

$$\nabla_X \sigma = e^{-i\theta} (ds(X) + iA(X)s(m))$$

The reason things are complicated is because we are remembering more information than we need (a whole *G*'s worth of frame data) in order to make it easier to write down.

Jonathan Evans ()