Lecture 3: $U(1)$-bundles

Jonathan Evans

27th September 2011

- Remember that a $U(1)$-bundle is a space L with a free action of $U(1)$ (i.e. no fixed points) so that the space of orbits is a manifold M.
- We'll write the projection $\pi: L \rightarrow M$ and we call $L_{p}:=\pi^{-1}(p)$ a fibre (where p is a point in M).
- A section is a smooth map $\sigma: M \rightarrow L$ such that $\pi \circ \sigma=\mathrm{id}$ (i.e. a smoothly varying choice of point in each fibre) and a local section is a section defined only over some open subset of M.
- Vertical distribution V is the subbundle of $T L$ consisting of vectors tangent to fibres, i.e. $V_{x}=T_{x} L_{p}(\pi(x)=p)$.

Connections

However there's no canonical subspace of horizontal vectors (i.e. which projects 1-1 onto the tangent space of M via π).

- A connection is a choice of horizontal subspace $H_{x} \subset T_{x} L$ at each point $x \in L$. We require $\pi_{*}: H_{x} \rightarrow T_{\pi(x)} M$ to be an isomorphism.
- Horizontal lift of a vector field X on M is then the unique vector field \tilde{X} on L with $\pi_{*} \tilde{X}=X$ and $\tilde{X} \subset H$.
- Moreover we require that if $g \in U(1)$ then $g_{*} \tilde{X}_{x}=\tilde{X}_{x g}$ (so $\left.g H_{x}=H_{x g}\right)$.
- Write α for the V-valued 1-form $\alpha: T L \rightarrow V$ such that $\alpha(v)=v$ for all $v \in V$ and $\alpha(H)=0$.
- Now we can understand what it means to take the vertical component of a vector, that is, the deviation of a local section σ from being horizontal:

$$
\nabla_{X} \sigma:=\alpha_{\sigma(q)}\left(\sigma_{*} X\right)=\sigma_{*} X-\tilde{X}
$$

for a vector field X on M and a point $q \in M$.

Gauge transformations

A gauge transformation is a bundle automorphism: a diffeomorphism Φ of L such that

- Φ preserves the bundle structure $(\pi \circ \Phi=\pi)$
- and Φ is $U(1)$-equivariant, i.e. $\phi(x g)=\phi(x) g$ for all $x \in L, g \in U(1)$. These form an infinite-dimensional Lie group of gauge transformations (Ex: You can see heuristically it's infinite-dimensional by asking yourself what its Lie algebra is). If u is a gauge transformation then it acts in the obvious way on sections $(\sigma \mapsto u \sigma)$ and on connections: $(u \nabla)_{X} \sigma:=u_{*} \nabla_{X}\left(u^{-1} \sigma\right)$ (Ex: Check this does what you think it does to the horizontal spaces).

Example

Take $L=U(1) \times M$ and let the horizontal space at $\left(e^{i \theta}, q\right)$ be $0 \oplus T_{q} M$. This is the trivial connection on the trivial $U(1)$-bundle.

- If σ is a section then it can be considered as a map $e^{i \theta}: M \rightarrow U(1)$ and $\nabla_{X} \sigma=i d \theta(X)$. We therefore usually write $\nabla=d$.
- More generally we can take $\nabla=d+i A$ for any 1-form A, so ${ }^{1}$ $\nabla_{x} e^{i \theta}=i d \theta(X)+i A(X)$. This corresponds to the horizontal distribution given by $H=\operatorname{gr}(-i A)$ where gr denotes the graph of $-A$ considered as a linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}$.
- If $u:\left(e^{i \theta}, \boldsymbol{q}\right) \mapsto\left(e^{i(\psi+\theta)}, \boldsymbol{q}\right)$ is a gauge transformation then $(u \nabla)_{X}=d+i A-i d \psi$. To see this, note that the image $c e^{i \psi}$ of a horizontal (constant) section c should be horizontal for the new connection.
- In particular, a connection $d+i A$ is gauge equivalent to the trivial connection if and only if A is exact.

[^0]
The difference of two connections

The trick with the 1-form is quite general. Suppose that we have two connections, H and H^{\prime}. Pick a point $x \in L$ and consider how we might write H_{x}^{\prime} in terms of H_{x}. Since both project 1-1 to $T_{\pi(x)} M$ we can write H_{x}^{\prime} as the graph of a linear map $H_{x} \rightarrow V_{x}=i \mathbb{R}$. Since the connections are $U(1)$-invariant we see that this descends to a 1-form A on M. In particular

$$
\left(\nabla_{X}^{\prime}-\nabla_{X}\right) \sigma=i A(X)
$$

Technically, of course, A takes values not in \mathbb{R} but in the \mathbb{R}-bundle over M whose fibre at $q=\pi(p)=\pi\left(p^{\prime}\right)$ is $V_{p} \cong V_{p^{\prime}}$ but this turns out to be the trivial bundle in a canonical way if L and M are oriented.

Curvature

We have seen that connections on the trivial bundle over M are of the form $d+i A$ for a 1 -form A on M and that these are gauge equivalent to the trivial connection d if and only if A is exact (if and only if A is closed, by the Poincaré lemma). Therefore we see that the curvature 2-form $F=d A$ is a measure of how nontrivial a connection is. Now suppose we have a nontrivial bundle (so there's no canonical d); how do we make sense of curvature?

Notice that any vector field X on M has a horizontal lift \tilde{X} to L with respect to a given connection ∇ : it's just the unique vector field such that $\tilde{X}_{p} \in H_{p}$ and $\pi_{*} \tilde{X}=X$. A 2-form eats two vectors and outputs a number, so let's try

$$
F(X, Y)=\alpha([\tilde{X}, \tilde{Y}])
$$

(remember α is the projection with kernel H).

Lemma

This defines a 2-form.

Proof.

We need to show that F is \mathcal{C}^{∞}-bilinear, i.e.

$$
F(f X, g Y)=f g F(X, Y)
$$

for any two functions $f, g \in \mathcal{C}^{\infty}(M)$. But

$$
\begin{aligned}
{[f \tilde{X}, g \tilde{Y}] } & =f \tilde{X}(g \tilde{Y})-g \tilde{Y}(f \tilde{X}) \\
& =f g[\tilde{X}, \tilde{Y}]+f \tilde{X}(g) \tilde{Y}-g \tilde{Y}(f) \tilde{X}
\end{aligned}
$$

Since the final two terms are horizontal they are killed by α.
Ex: Check that when L is the trivial bundle and $\nabla=d+i A$ this gives $F=i d A$ (it may help to pass to coordinates).

Return to Maxwell's equations

The F we have here is precisely the magnetic field β we had before.

Lemma

The curvature 2-form of a $U(1)$-bundle satisfies the intrinsic Maxwell equation $d F=0$, i.e. F is closed.

Proof.

In a local chart we have seen that $F=i d A$ and therefore $d F=0$. \square
Next we will seek connections which satisfy the extrinsic Maxwell equation $d \star F=\mu_{0} J$.

[^0]: ${ }^{1}$ This equation may seem more familiar if you multiply the right-hand side by $e^{i \theta}$.

