Lecture 22: The Harder-Narasimhan stratification

Jonathan Evans

13th December 2011

Last time we began to investigate the stratification on the space of connections given by \mathcal{A}_{μ}, consisting of connections ∇ such that the associated holomorphic vector bundle \mathcal{E}_{∇} has Harder-Narasimhan type μ. We partially ordered the μ and stated a theorem of Atiyah and Bott (originally Shatz) which told us that

$$
\overline{\mathcal{A}}_{\mu} \subset \bigcup_{\lambda \geq \mu} \mathcal{A}_{\lambda}
$$

This was the first of various conditions we need to use the stratification to compute the homology of \mathcal{A}. We'll sketch a proof of this fact first.

Atiyah-Bott-Shatz

The idea is clever. Remember in Donaldson's proof of the Narasimhan-Seshadri theorem we replaced the Yang-Mills functional

$$
\int \operatorname{Tr}\left(F_{\nabla} \wedge \star F_{\nabla}\right)
$$

by using a different norm (instead of Tr). Let $\phi: \mathfrak{g} \rightarrow \mathbb{R}$ be an adjoint-invariant convex function on the Lie algebra (the space of Hermitian matrices). Convex just means
$\phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y)$ and define

$$
\Phi(\nabla)=\int \phi\left(F_{\nabla} \wedge \star F_{\nabla}\right)
$$

Since the adjoint-orbits of $U(n)$ on its Lie algebra are just the conjugacy classes of Hermitian matrices (and are therefore classified by their eigenvalues) an adjoint-invariant convex function can be thought of as a convex function on \mathbb{R}^{n} (the space of eigenvalues).

Theorem

If ∇ is compatible with a holomorphic vector bundle with Harder-Narasimhan type μ then $\Phi(\nabla) \geq \phi(\mu)$ (thinking of μ as the eigenvalues of a matrix).

The proof of this is very similar in spirit to the lower bounds on the Yang-Mills-like functional we proved during the proof of the Narasimhan-Seshadri theorem (specifically in Lecture 13). Now, for a holomorphic vector bundle E, we define $\Phi(E)=\inf _{\nabla \in \mathcal{O}(\mathcal{E})} \Phi(\nabla)$. Similarly to the N -S theorem it is possible to prove that for stable bundles

$$
\Phi(E)=\phi(\mu)
$$

(where μ is now the constant vector $(\mu(E), \ldots, \mu(E))$). That is there exists a constant central curvature connection. One can prove by induction using the HN filtration (and the filtration of semistable bundles with stable quotients) that

$$
\Phi(E)=\phi(\mu)
$$

for all bundles (where μ is now the HN type of E).

Now suppose that a connection ∇ in \mathcal{A}_{λ} is in the closure of \mathcal{A}_{μ} (so $\left.\mathcal{A}_{\mu} \ni \nabla_{i} \rightarrow \nabla\right)$. Then because $\Phi\left(E_{\nabla_{i}}\right)$ is defined by an infimum, $\phi(\lambda)=\Phi\left(E_{\nabla}\right) \geq \Phi\left(E_{\nabla_{i}}\right)=\phi(\mu)$. This is true for any convex invariant ϕ.

Theorem

Suppose that for any convex function on \mathbb{R}^{n}

$$
\phi(\lambda) \geq \phi(\mu)
$$

Then $\lambda \geq \mu$.
The proof of this requires no heavy machinery and I refer you to Section 12 of Atiyah and Bott. This shows that the closure of \mathcal{A}_{μ} is contained in the union of strata \mathcal{A}_{λ} with $\lambda \geq \mu$.

Codimension

We also need to understand the codimension of \mathcal{A}_{μ} (to show that there are at most finitely many μ with a given codimension). At some point during the proof of Narasimhan-Seshadri we proved the following theorem of Atiyah-Bott.

Lemma

Fix an L_{1}^{2}-connection $\nabla^{\prime}=\nabla+B$ (∇ is a smooth reference connection). The action $F: \mathcal{G}_{\mathbb{C}} \rightarrow \mathcal{A}$ (sending g to $g \nabla^{\prime}$) of the L_{2}^{2}-complexified gauge transformations on the L_{1}^{2}-connections has the property that $d_{1} F$ is Fredholm. Here $d_{1} F: L_{2}^{2}\left(\Omega^{0}\left(M ; \operatorname{ad}\left(P_{\mathbb{C}}\right)\right)\right) \rightarrow L_{1}^{2}\left(\Omega^{1}(M ; \operatorname{ad}(P))\right)$ denotes the derivative at $1 \in \mathcal{G}_{\mathbb{C}}$.

Moreover we saw that $d_{1} F(\epsilon)=-\left(\nabla^{\prime}\right)^{0,1} \epsilon$ which is a compact perturbation of $\nabla^{0,1}$. In particular, the cokernel of $d_{1} F$ (which constitutes a complement to the complexified gauge orbit of ∇) has codimension $H_{\bar{\partial}}^{1}(\operatorname{End}(\mathcal{E}))$ where this denotes the Dolbeault cohomology group. It is a happy fact of algebraic geometry that the Euler characteristic of Dolbeault cohomology for a holomorphic vector bundle V can be computed using the Riemann-Roch theorem

$$
\left.H_{\bar{\partial}}^{0}(V)-H_{\bar{\partial}}^{1}(V)\right)=2 c_{1}(V)+\operatorname{rank}(V)(2-2 g)
$$

where g is the genus of the curve. We will need this later. Now \mathcal{A}_{μ} is a union of complexified gauge orbits (those whose Harder-Narasimhan filtration has type μ). Let $\operatorname{End}_{0} \mathcal{E}$ denote the bundle of endomorphisms of \mathcal{E} which preserve the filtration by subbundles $0=\mathcal{E}_{0} \subset \cdots \subset \mathcal{E}_{r}=\mathcal{E}$ and consider the quotient bundle

$$
0 \rightarrow \operatorname{End}_{0}(\mathcal{E}) \rightarrow \operatorname{End}(\mathcal{E}) \rightarrow \operatorname{End}_{1}(\mathcal{E}) \rightarrow 0
$$

The corresponding Dolbeault LES reads
$\cdots \rightarrow H^{0}\left(\operatorname{End}_{1}(\mathcal{E})\right) \rightarrow H^{1}\left(\operatorname{End}_{0}(\mathcal{E})\right) \rightarrow H^{1}(\operatorname{End}(\mathcal{E})) \rightarrow H^{1}\left(\operatorname{End}_{1}(\mathcal{E})\right) \rightarrow 0$
since it's a bundle over a curve (complex dimension 1). We will show that $H^{0}\left(\operatorname{End}_{1} \mathcal{E}\right)=0$. This group consists of Dolbeault cocycles, namely holomorphic endomorphisms! But there can be no nonzero such holomorphic endomorphisms. To see this, suppose $f: \mathcal{E} \rightarrow \mathcal{E}$ were such an endomorphism (nonzero). Since it does not preserve the HN filtration there exists a (minimal) k such that $f\left(\mathcal{E}_{k}\right) \not \subset \mathcal{E}_{k}$ and a minimal $\ell \geq k+1$ such that $f\left(\mathcal{E}_{k}\right) \subset \mathcal{E}_{\ell}$. By minimality of k and ℓ this descends to a nontrivial $\operatorname{map} \mathcal{E}_{k} / \mathcal{E}_{k-1} \rightarrow \mathcal{E}_{\ell} / \mathcal{E}_{\ell-1}$. But this is a nontrivial map between semistable vector bundles where the target has strictly smaller slope. Therefore the kernel has strictly larger slope, contradicting semistability of $\mathcal{E}_{k} / \mathcal{E}_{k-1}$.

Therefore we have a SES

$$
0 \rightarrow H^{1}\left(\operatorname{End}_{0}(\mathcal{E})\right) \rightarrow H^{1}(\operatorname{End}(\mathcal{E})) \rightarrow H^{1}\left(\operatorname{End}_{1}(\mathcal{E})\right) \rightarrow 0
$$

we can think of $H^{1}(\operatorname{End}(\mathcal{E}))$ consisting of a) deformations of \mathcal{E} which preserve the HN filtration $\left(H^{1}\left(\operatorname{End}_{0}(\mathcal{E})\right)\right.$, tangent to $\left.\mathcal{A}_{\mu}\right)$ and b$)$ deformations complementary to \mathcal{A}_{μ} (coming from $H^{1}\left(\operatorname{End}_{1}(\mathcal{E})\right)$). Indeed, this latter collection of deformation spaces have constant dimension, by Riemann-Roch and $H^{0}\left(\operatorname{End}_{1}(\mathcal{E})\right)=0$.

This dimension is easily computed by Riemann-Roch because $c_{1}\left(A^{*} \otimes B\right)=c_{1}(B) \operatorname{rank}(A)-c_{1}(A) \operatorname{rank}(B)$. Therefore $\operatorname{End}(\mathcal{E})$ has $c_{1}=0$ and $c_{1}\left(\operatorname{End}_{1}(\mathcal{E})\right)=-c_{1}\left(\operatorname{End}_{0}(\mathcal{E})\right)$. This latter Chern class can be computed by choosing a Hermitian metric so that the HN filtration splits and $\operatorname{End}_{0}(\mathcal{E})$ is isomorphic (as a complex vector bundle) to the endomorphisms of $D_{1} \oplus D_{2} \oplus \cdots \oplus D_{r}$ which are upper triangular with respect to this decomposition, i.e.

$$
\operatorname{End}_{0}(\mathcal{E}) \cong \bigoplus_{j>i} D_{j}^{*} \otimes D_{i}
$$

which has $c_{1}=\sum_{j>i}\left(\operatorname{rank}\left(D_{i}\right) c_{1}\left(D_{j}\right)-\operatorname{rank}\left(D_{j}\right) c_{1}\left(D_{i}\right)\right)$. Overall we get

$$
\operatorname{dim}\left(H^{1}\left(\operatorname{End}_{1}(\mathcal{E})\right)\right)=\sum_{i>j}\left(\left(n_{i} k_{j}-n_{j} k_{i}\right)+n_{i} n_{j}(g-1)\right)
$$

where $n_{i}=\operatorname{rank}\left(D_{i}\right)$ and $k_{i}=c_{1}\left(D_{i}\right)$. Since we can express the codimension entirely in terms of the vector $\underline{\mu}$ of slopes this means that our stratification satisfies the finiteness requirements outlined last lecture.

