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To avoid talking about special relativity I’ll specialise to the case of a
time-independent magnetic field B with no electric field (E = 0) and
(time-independent) current density J. This satisfies two of Maxwell’s
equations

∇ · B = 0 ∇× B = µ0J (1)

We will reformulate these equations to get rid of things like × which
depends on our working with R3. First, what the hell is B? The force it
exerts on a particle of charge q and velocity v is F = qv × B.
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Let’s replace B by the 2-form

β = B1dx2 ∧ dx3 + B2dx3 ∧ dx1 + B3dx1 ∧ dx2

This eats the vector qv and outputs

β(qv , ·) =
3∑

i=1

(qv × B)idxi

which is the 1-form dual to the force vector exerted on the particle, i.e.

β(qv,X) = F · X for all vector fields X

In general a magnetic field is precisely this, a 2-form which eats a vector
qv and outputs the dual to the force vector exerted.

Jonathan Evans () Lecture 2: Magnetostatics 22nd September 2011 3 / 12



Maxwell’s equation ∇ · B translates into dβ = 0. Let’s replace J by its
dual 1-form (say ψ) and see how the other Maxwell equation translates.
We need one more operation: define ? on forms by sending dx1 to
dx2 ∧ dx3, dx1 ∧ dx2 to dx3 and more generally

dxi1 ∧ · · · ∧ dxik

to the n − k-form dxj1 ∧ · · · ∧ dxjn−k
such that

dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjn−k
= vol := dx1 ∧ · · · ∧ dxn

In particular
?β = B1dx1 + B2dx2 + B3dx3

so note that d ? β is the n − 1-form dual to ∇× B.

dβ = 0 d ? β =µ0(?ψ) (2)
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Now these equations make sense on any Riemannian manifold (M, g)
provided we can make sense of duality between 1-forms and vector fields
and of the Hodge star ?. Indeed, define the dual 1-form to a vector field X
to be χ, such that

χ(Y ) = g(X ,Y )

and define the Hodge star by

χ ∧ ?χ = |χ|2volg

Note that ?2 = ±1.

Remark

In fact the current is usually thought of as the n − 1-form j = ?ψ which
takes as its input a “hyperplane” v1 ∧ · · · ∧ vn−1 and outputs the flux
through an infinitesimal hyperplane j(v1, . . . , vn−1).

Jonathan Evans () Lecture 2: Magnetostatics 22nd September 2011 5 / 12



Observe that by Maxwell’s equations the 2-form β is closed.

Lemma (Poincaré’s lemma)

Let κ be a k-form on a contractible n-manifold (like Rn). If dκ = 0 then
there exists an k − 1-form α (the potential or antiderivative) such that
dα = κ.

Proof.

Bookwork exercise! ¨̂ (a bookworm)

Therefore β = dα for a potential 1-form α. However, there is ambiguity in
the choice of α, since

d(α + df ) = dα = β

for any function f . In fact this is the only ambiguity on Rn, since the
difference of two potentials defining the same fields is an closed 1-form
and hence there exists such an f by Poincaré’s lemma. This ambiguity is
called gauge freedom and changing potential using a function f is called a
gauge transformation.
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The gauge principle

We now seek to understand this formalism a little better. We begin with a
beautiful observation of Weyl. Quantum mechanics uses a complex-valued
function ψ to describe physics, the wave-function, whose squared norm is
supposed to represent probability density and whose phase is something
unobservable. By unobservable, I mean that you only ever measure
expectation values when you make observations and the expectation value
of an observable Â (a C-linear operator on the space of functions) is∫

ψ∗Âψvol

Therefore you should be able to multiply ψ by e iθ (θ constant) and obtain
the same physics. However, it seems unnatural to make global changes of
phase: physics is supposed to be local. We ask ourselves: what if we allow
θ to depend on position in space-time? (For magnetostatics let’s just allow
θ to vary in space).
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In Dirac’s relativistic quantum theory of spin 1/2 particles ψ is actually a
spinor but it still carries an action of U(1) which is “irrelevant” for the
expectation values. ψ satisfies Dirac’s equation

Dψ := −iγµ∂µψ + mψ = 0

where the µ runs over space-time coordinates and the γµ are certain
matrices. But, lo and behold, when we make an arbitrary phase change
ψ 7→ e iθψ we get

D(e iθψ) = e iθDψ − iγµ(∂µθ)ψ

so the local change of phase screws up our favourite equations. However,
we could get away with this if we absorb the error term into the equation,
that is we simultaneously transform

ψ 7→ e iθψ, ∂µ 7→ ∂µ + ∂µθ
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We have therefore introduced a new field (actually a potential!) ∂µθ which
interacts with the ‘particles’ ψ in our theory. Of course we want our
physics to be locally phase invariant, so this interaction must somehow be
trivial. But remember that the magnetostatic potential α = dθ has no
observable effect on particles since the magnetic field β = dα = ddθ = 0!
So this is the perfect receptacle for our new potential. That is, we use
‘gauge invariance’ of magnetostatics (or EM) to eat up the ‘local phase
invariance’ of quantum mechanics. Neat idea.
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More generally, this is the idea behind a gauge theory: a formalism for
localising some symmetry of a physical theory. Instead of thinking of
arg(ψ) as a function, we think of it as a section of a U(1)-bundle.

A U(1)-bundle is just a space L with a free U(1)-action (for any
x ∈ L, xg = x implies g = 1 ∈ U(1)). There is a quotient map
π : L→ L/U(1) =: M where M is a manifold (in our case
U(1)× R3 → R3). π commutes with the U(1)-action.

A section is then a map σ : M → L such that π ◦ σ = id. A global
section may not exist but local sections always make sense.

The ∂µ are replaced by a differential operator called a connection (for
differentiating local sections) and the “change of phase” is replaced
by a “gauge transformation” which acts on local sections and on the
connection simultaneously.
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Example (Stupidest example)

M × U(1) admits a free U(1)-action (x , e iφ) 7→ (x , e i(φ+θ)) and the space
of orbits is M. For any map s : M → U(1) the map x 7→ (x , e is(x)) is a
section. This is called the product bundle.

Two bundles π : L→ M and π′ : L′ → M over the same space M are
called isomorphic if there is a diffeomorphism Ψ : L→ L′ such that Ψ
commutes with the U(1) actions. In particular π′ ◦Ψ = π. A bundle is
called trivial if it is isomorphic to the product bundle. Ex: A U(1)-bundle
is trivial if and only if it admits a section.
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Connections

On the total space (L) of a U(1)-bundle it is easy to pick out the vertical
vectors (tangent to the fibres of π, or equivalently to the orbits of U(1)).
However there’s no canonical subspace of horizontal vectors (i.e. which
projects 1-1 onto the tangent space of M via π). A connection is a choice
of horizontal subspace Hp ⊂ TpL at each point p ∈ L. Moreover we
require that if g ∈ U(1) then gHp = Hg(p). Now we can understand what
it means to take the vertical component of a vector (we can define a
projection αp : TpL→ Vp whose kernel is Hp, where Vp is the space of
vertical vectors at p). That is, we can understand the deviation of a local
section σ from being horizontal:

∇Xσ := ασ(q)(dσ)(X )

for a vector field X on M and a point q ∈ M.
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