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Last lecture we introduced something called G -equivariant cohomology.
This is a contravariant functor on the category of G -spaces with
G -equivariant maps into the category of modules over H∗(BG ). The idea
behind it was that quotients are only worth studying if they’re quotients by
free group actions so we replace each G -space X by a free G -space
X × EG , where EG is a contractible free G -space, and we form the Borel
space XG = X ×G EG . When the action is free, this is homotopy
equivalent to the quotient X/G . In general there’s a map XG → X/G
where the fibre over a point [p] ∈ X/G is the classifying space BGp of the
stabiliser Gp.
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Of course, we are interested in the GC-equivariant cohomology of A and
GC is a big group so BGC might be quite complicated. Here’s a first
observation. Consider the inclusion G ⊂ GC.

Theorem

The quotient GC/G is contractible and hence H∗G(X ) ∼= H∗GC(X ) for any
GC-space X .
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Proof.

To see contractibility recall that gauge transformations are just maps from
P to GL(n,C) (or U(n)) satisfying an equivariance condition and that
GL(n,C) canonically deformation retracts onto U(n): g has a polar
decomposition g = pu into a positive definite Hermitian p and a unitary u
and you can make sense of pt for any t since it can be diagonalised
pt = qd tq† and d t is just the diagonal matrix whose entries are the t-th
powers of the eigenvalues. Now gt = ptu is a deformation retract from
GL(n,C) to U(n).
To see the equality of equivariant cohomologies note that EGC is a
contractible free G-space and hence the inclusion G → GC induces a fibre
bundle

GC/G → XG = X ×G EGC → X ×GC EGC = XGC

Since the fibre is contractible, the projection is a homotopy
equivalence.
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So what is BG? There’s an obvious contractible space on which G acts,
namely A, but the action is not free. However there’s a natural closed
normal subgroup which does act freely: fix a point x ∈ M and an
isomorphism (“framing”) φ : G → Px . Once we’ve picked this framing, the
other framings form a group isomorphic to G with φ considered to be the
identity. The gauge group acts on this copy of G by postcomposition and
we denote by G0 the kernel of this action (i.e. the gauge transformations
which “equal the identity at x” (i.e. fix the framing φ). Suppose that
g ∈ G0 is a gauge transformation fixing a connection ∇. Then
g∇ = ∇− (∇g)g−1 = ∇ means that ∇g = 0, i.e. g is covariantly
constant. But then if g equals the identity somewhere, it must equal the
identity everywhere. Hence g = id and the action of G0 is free.

Theorem

We have A/G0 = BG0 and (A× EG )/G = BG.

The second fact follows from the freeness of the diagonal G-action on
A× EG (where g ∈ G acts by g(x) on EG ). Alas this theorem is not very
helpful yet. Much better is...
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Theorem

The classifying space for G0 (resp. G) is weakly homotopy equivalent to
the space of maps

Map0P(M,BG ) (resp. MapP(M,BG ))

where Map0 denotes the subspace of based maps f : M → BG and MapP
denotes the subspace of maps such that P = f ∗EG where EG is the
universal principal G-bundle over BG .

Remember that weak homotopy equivalence means there is a map inducing
an isomorphism on homotopy groups. A weak homotopy equivalence
induces an isomorphism on cohomology and that’s all we’re interested in.
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Proof.

Notice that we can divide the G -bundle P ×A× EG → M ×A× EG by
the diagonal actions of G and we get a principal G -bundle

(P ×A× EG )/G → M × BG

Moreover this bundle has a canonical connection because a point on the
fibre contains the information of a connection! This bundle admits a
classifying map

M × BG → BG

or equivalently a map BG → MapP(M,BG ). The same thing works for
G0. We need to show that these are weak homotopy equivalences: let’s do
it in the based case. We have for any compact space T

[T ,Map0P(M,BG )] = [T ×M,BG ]

where [, ] denotes homotopy classes of based maps.
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Proof.

Now a map T ×M → BG classifies a family of G -bundles Pt → M given
by pulling back. On the other hand a map T → BG0 classifies a family of
G -bundles with connections. Since the space of connections is an affine
space, one can homotope between any two such maps provided they define
the same family of bundles. Therefore there is a bijection

[T ,Map0P(M,BG )]↔ [T ,BG]

for any compact space T (in particular spheres). This implies that the map
is a weak homotopy equivalence. Note that both Map0P(M,BG ) and BG0
are the total spaces of G -bundles over MapP(M,BG ) and BG respectively.
One can use this to deduce the theorem in the unbased case.
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Why is this a more useful characterisation? Because of the following
theorem of Thom

Theorem (Thom)

The space of maps from a finite CW complex into an Eilenberg-Maclane
space is a direct product

Map(X ,K (π, n)) =
∏
q

K (Hq(X ;π), n − q)

(Remember an Eilenberg-Maclane space K (π, n) is one with πn = π,
πk = 0 if k 6= n).

You may be perturbed to see π as a coefficient group, but if π is
nonabelian then n = 1 and hence q ≤ 1 (Ex: Why, then, should we not
worry?).
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In the cases we’re interested in, π will be abelian.

Example

For example, K (Z, 2) = BU(1) (Ex: Why?) so for a Riemann surface M
of genus g

Map(M,BU(1)) = Z× (S1)2g × CP∞

The component corresponding to MapP(M,BU(1)) is then just
{c1(P)} × (S1)2g × CP∞. We write the Poincaré polynomial (generating
function for Betti numbers)

P(BG) = (1 + q)2g (1 + q2 + q4 + · · · ) =
(1 + q)2g

1− q2

You should think of Thom’s theorem as a generalisation of the
better-known statement that

Hn(M, π) = [M,K (π, n)]
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Of course in general BU(n) is not an Eilenberg-Maclane space! However
we have the following silly trick. Each Chern class ci is an element of
H2i (BU(n);Z) = [BU(n),K (Z, 2i)] and hence can be thought of as a map
BU(n)→ K (Z, 2i). In fact the product

c1 × · · · × cn : BU(n)→
n∏

i=1

K (Z, 2i)

induces an isomorphism on rational cohomology (since the rational
cohomology on both sides is a polynomial ring in the Chern classes - over
Z the RHS is much more complicated!). Therefore if rational cohomology
is all we’re interested in, we can replace MapP(M,BU(n)) by
MapP(M,

∏n
i=1 K (Z, 2i)).
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It may seem like I’m cheating you here, but remember Whitehead’s
theorem that if this map had been a Z-homology isomorphism then the
spaces would have been homotopy equivalent. There’s a wonderful theory
called rational homotopy theory which studies spaces up to Q-homology
isomorphism and everything works just as well (if not better). I’m
implicitly using this. Thom now implies

P(MapP(M,BU(n));Q) =

∏n
k=1(1 + t2k−1)2g

(1− t2n)
∏n−1

k=1(1− t2k)2

provided you know how to calculate the rational homology of
Eilenberg-Maclane spaces.
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The relevant computations are

P(K (Z, 2k);Q) = 1/(1− t2k)

P(K (Z, 2k − 1);Q) = 1 + t2k+1

which is true for S1 and CP∞ and can be computed inductively by the
following observation: let PK (Z, n) be the space of paths γ in K (Z, n)
with γ(0) = ? (a fixed basepoint). Then γ 7→ γ(1) is a fibration
PK (n,Z)→ K (n,Z) whose total space is contractible. The homotopy
LES tells us that the fibre is a K (Z, n − 1) and the induction step follows
from the Leray-Serre spectral sequence (...exercise?).
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