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We want to finish our proof of Uhlenbeck’s theorem. What was left was to
prove was:

Proposition

Given a path of connections ∇t = d + At on the trivial U(n)-bundle over
S2 such that A0 = 0 and ||F∇t ||L2 ≤ ζ then the following subset S ⊂ [0, 1]
is open. A time t ∈ [0, 1] is in S if there exists a L2

2-gauge transformation
ut such that ut∇t = d + A′t satisfies d∗A′t = 0 and ||A′t ||L2

1
< 2N||F∇t ||L2

(or A′t = 0).

Recall that last time we proved a lemma

Lemma

Let d + A be a connection on the trivial bundle over S2 such that
d∗A = 0. Then there are constants N, η > 0 such that

||A||L4 < η =⇒ ||A||L2
1
≤ N||F∇||L2 .
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This lemma lets us see that the curvature bound in the Proposition is
open. The problem is that we want 0 ∈ S and 0 clearly doesn’t obey the
strict inequality ||A′t ||L2

1
< 2N||F∇t ||L2 . But any connection matrix which

is L2
1-close to 0 also has very small L4-norm (by Sobolev embedding) and

hence by the lemma the strict inequality holds (in an even stronger form!).
All that remains is to show that if we can solve d∗(utAt) = 0 to get ut for
some given t then we can solve it for nearby t.

Proof.

Once again the proof follows Don and Kron. The aim is to use the implicit
function theorem to show that for nearby t we can solve the equation
d∗A′t = 0 and that the resulting A′t depends continuously on t. We’re
looking for solutions ut ∈ L2

2 to

0 = d∗(utAt)

= d∗(utAtu
−1
t − (dut)u−1

t )

Let t0 ∈ S . WLOG assume that A0 = A′0, u0 = 1 and write Aδ = A0 + bδ,
uδ = exp(χδ).
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Proof, continued:

Our equation is H(χδ, bδ) = 0 where

H(χ, b) = d∗(eχ(B + b)e−χ − d(eχ)e−χ) : E` × F`−1 → E`−2

is a smooth map. Here (for ` ≥ 3) E` denotes the space of Lie
algebra-valued L2

` -functions with integral zero and F` is the space of L2
` Lie

algebra-valued 1-forms. Why integral zero? Well d∗ is the usual Euclidean
codifferential on 1-forms on S2 so its image is precisely the set of functions
with integral zero. Now if we can show d1H : E` × {0} → E`−2 is
surjective then the Banach space implicit function theorem tells us that for
small b ∈ F`−1 there is a small solution χ to H(χ, b) = 0. This solves our
existence problem for small δ.
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Proof, continued:

In fact this linearisation is

(d1H)(χ) = d∗(∇0χ)

where ∇0 = d + A0. Suppose it’s not surjective so that there exists a
smooth η with 〈d∗∇0χ, η〉 = 0 for all χ. Then in particular (when χ = η)

0 = 〈∇0η, dη〉 = ||dη||2L2 + 〈[A0, η], dη〉

Since η has integral zero it’s in the orthogonal complement to the kernel
of d acting on functions, which is elliptic so

||η||L2
1
≤ c||dη||L2

Jonathan Evans () Lecture 18: Gauge fixing II 24th November 2011 5 / 9



Proof, continued:

Moreover

|〈[A0, η], dη〉| ≤ c ′||dη||L2 ||[A0, η]||
≤ c ′′||dη||L2 ||A0||L4 ||||η||L4

≤ c ′′′||dη||2L2 ||A0||L2
1

In total
||dη||2L2 ≤ c ′′′||dη||2L2 ||A0||L2

1

but since η is not just zero we can divide by ||dη||2L2 and deduce a uniform
lower bound (some combination of Sobolev constants and elliptic
regularity constants for the Euclidean d∗) on the L2

1-norm of A0. But since
t0 ∈ S we have an upper bound for this L2

1-norm by 2Nζ. We still have
the liberty to change ζ (in the small direction!) which we now do to
ensure a contradiction. Therefore the linearisation of H at the origin is
surjective, therefore we can solve our equation by the implicit function
theorem, therefore S is open. Woopydoo.
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I have been debating how to continue. I said very early on that I’d be
introducing new concepts and using them straightaway and that if I went
too fast you should stop me. Well get your fingers on the buzzers, because
I have decided to start with G -equivariant cohomology. This is a
cohomology theory for topological spaces X with a continuous action of a
group G and will provide us with a nice antidote to the analytic mayhem
of the last five lectures. The first obvious candidate is just the ordinary
cohomology of the quotient X/G , but the quotient can be very bad (e.g.
C∗ acting on C). The crux of the matter is that different points can have
different stabilisers and you should incorporate that fact into the
cohomology of your space. The worst case is G acting trivially on a single
point (so the stabiliser is G ). The best case is a free action of G and in
this case we might hope to recover the ordinary cohomology of the
quotient. So let’s just naively enlarge our space X to make the action free.
Remember from the exercises that any topological group G admits a
continuous free action on a contractible space EG . Let’s just take X × EG
with the diagonal G -action.
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Now we have a free G -action and so our equivariant cohomology should be
the ordinary cohomology of the quotient.

H∗G (X ) : = H∗(X ×G EG )

where X ×G EG = (X × EG )/G is called the Borel space of the action
(sometimes written XG ). Notice that if the action were already free then
the projection X ×G EG → X/G has contractible fibre EG and hence the
cohomology of a free quotient X/G equals the G -equivariant cohomology
of X , as desired. What about X = pt? We get

H∗G (pt) = H∗(pt×G EG ) = H∗(EG/G ) = H∗(BG )

so we get the cohomology of the classifying space!
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More generally one sees that the fibre of the projection X ×G EG → X/G
over [x ] is just EG/Gx where Gx denotes the stabiliser of x . Since EG is
also a free Gx -space, this is homotopy equivalent to BGx . Here’s an
example. Take X = C, G = U(1). The easiest free U(1)-space is S∞ and
the quotient is CP∞ = BU(1). Therefore
XG = C×U(1) S∞ → C/U(1) ∼= R≥0 has general fibre S∞ but over 0 the
fibre is CP∞. What we have essentially done is to replace C by C∞+1 and
then blow up the origin. It might help you to contemplate the
finite-dimensional approximations of this where you can really see it as a
blow-up you understand.
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