Lecture 17: Gauge fixing I

Jonathan Evans

22nd November 2011

Jonathan Evans ()

- ∢ ≣ → 22nd November 2011 1 / 10

-

3

Our aim today is to prove

Theorem (Uhlenbeck)

Consider the trivial U(n)-bundle over the unit 2-disc. There exist $\kappa > 0$ and $c < \infty$ such that if $\nabla = d + A$ is a connection with $||F_{\nabla}||_{L^2} \le \kappa$ then there is an L^2_2 -gauge transformation u such that $u\nabla = d + A'$ satisfies

- $d^*A' = 0$,
- $||A'||_{L^2_1} \leq c ||F_{\nabla'}||_{L^2}.$

Moreover if we require the boundary condition that the radial component $\sum_i (x_i/r)A_i$ tends to zero as $r \to 1$ then the resulting A' is unique up to constant gauge transformations.

- 2

イロト イポト イヨト イヨト

As when we proved that a unitary connection induces the structure of a holomorphic vector bundle, it will be convenient to work over a compact space so we use S^2 instead of the 2-disc (in this we follow Donaldson-Kronheimer rather than Uhlenbeck's original proof).

Theorem

There are constants ζ and N such that if $\nabla_t = d + A_t$ is a path of connections on the trivial U(n)-bundle over S^2 with $A_0 = 0$ and $||F_{\nabla_t}||_{L^2} \leq \zeta$ then there exist L_2^2 -gauge transformations u_t such that $u_t \nabla_t = d + A'_t$ satisfy $d^*A'_t = 0$ and $||A'_t||_{L^2_1} < 2N||F_{\nabla_t}||_{L^2}$ (unless $A'_t = 0$).

Let's write $S \subset [0,1]$ for the subset of the interval consisting of t for which the conclusion of the theorem holds.

イロト イヨト イヨト イヨト

To deduce Uhlenbeck's theorem from this we take our connection of interest ∇ over the disc and construct a connection on the sphere by pulling back along the map p which collapses the 2-sphere onto a disc (by projecting onto a plane through the equator). Obviously this is not smooth along the equator, so instead we take a sequence of smooth approximations p_{ϵ} to p which differ only in an ϵ neighbourhood of the equator. Now suppose ∇ has curvature L^2 -bounded above by $\zeta/\sqrt{2} - \epsilon'$. Then for small enough ϵ , $p_{\epsilon}^* \nabla$ has curvature L^2 -bounded above by ζ . Moreover we can define a path of connections ∇_t , $t \in [0, 1]$ with $\nabla_0 = d$ by setting $A_t(x) = tA(tx)$ (here $x \mapsto tx$ is just rescaling the ball).

イロト イポト イヨト イヨト 二日

Since

$$\begin{split} ||F_{\nabla_t}||_{L^2} &= \sqrt{\int_{x \le 1} |t^2 F_{\nabla}(tx)|^2 d \mathrm{vol}_x} \\ &= \sqrt{\int_{y \le t} t^4 t^{-2} |F_{\nabla}|^2 d \mathrm{vol}_y} \\ &\le t |F_{\nabla}|_{L^2} \\ &\le \zeta/\sqrt{2} - \epsilon' \end{split}$$

we see that $p_{\epsilon}^* \nabla_t$ is a path of connections satisfying the hypotheses of the theorem. This allows us to put ∇ in Coulomb gauge on a slightly smaller ball, but that's all we need.

• • • • •

The idea will be to prove that S is both closed and open. Since $0 \in S$ the theorem will follow. First we prove a lemma.

Lemma

Let d + A be a connection on the trivial bundle over S^2 such that $d^*A = 0$. Then there are constants $N, \eta > 0$ such that

$$||A||_{L^4} < \eta \implies ||A||_{L^2_1} \le N||F_{\nabla}||_{L^2}.$$

Proof.

Since d is elliptic on ker(d^*) (think about it! This is just ellipticity of the Laplacian) and since it has no kernel (otherwise there would be nontrivial harmonic 1-forms on S^2 and hence a nontrivial class in $H^1(S^2)$) we have

$$||A||_{L^2_1} \le C ||dA||_{L^2}$$

Since $F_{\nabla} = dA + [A, A]$ and $||[A, A]||_{L^2} \le ||A||_{L^4}^2 \le C' ||A||_{L^4} ||A||_{L^2_1}$ by Hölder and Sobolev we get

$$||A||_{L^{2}_{1}} \leq C||dA||_{L^{2}} \leq C||F||_{L^{2}} + CC'||A||_{L^{4}}||A||_{L^{2}_{1}}$$

and when $||{\cal A}||_{L^4} < 1/(2{\it CC'}) = \eta$ we can take the last term over to the other side and get

$$||A||_{L^2_1} \le N||F||_{L^2}$$

(where N = 2C).

Now we take $\zeta < \frac{\eta}{2CN}$ where η and N are given by this lemma and C is the Sobolev constant for the embedding $L_1^2 \subset L^4$.

Lemma

Given a path satisfying the hypotheses of the theorem, S is closed.

Proof.

Let $t_i \in S$ be a sequence converging to some t_{∞} and write $A_{t_i} = A_i$, so that there exist gauge transformations u_i such that $A'_i = u_i A_i$ satisfies the conclusions of the theorem. Certainly as $i \to \infty$, $A_i \to A_{t_{\infty}} = A_{\infty}$. Since A'_i is bounded in L^2_1 there is a weakly convergent subsequence $A'_i \to A'_{\infty}$. We want to construct an L^2_2 -gauge transformation u_{∞} from A_{∞} to A'_{∞} . But

$$A'_{i} = u_{i}^{-1}A_{i}u_{i} + u_{i}^{-1}du_{i}$$

i.e. $du_{i} = u_{i}A'_{i} - A_{i}u_{i}$

イロト イポト イヨト イヨト

Proof, continued:

Since $u_i(x) \in U(n)$ which is compact we have $|u_i|_{L^2} \leq c$ and

$$|du_i|_{L^4} \leq c(|A_i'|_{L^4} + |A_i|_{L^4}) \leq cC(|A_i'|_{L^2_1} + |A_i|_{L^2_1})$$

Therefore $|u_i|_{L_1^4}$ is bounded uniformly in *i* and hence weakly converges to some *u* in L_1^4 . We need to show that *u* is in L_2^2 , but we know that

$$du = uA' - Au$$

and now I'm going to do something I said I wouldn't, which is to use another Sobolev theorem I haven't previously stated. It follows from Palais "Foundations of Global Analysis", Theorem 9.5(2) that $L_1^4 \otimes L_1^2 \rightarrow L_1^2$ is a well-defined Sobolev multiplication in 2-d. Therefore since $u \in L_1^4$ and $A, A' \in L_1^2$ we get $du \in L_1^2$ and hence $u \in L_2^2$.

イロト イポト イヨト イヨト

Proof.

The coclosedness equation is certainly preserved in the limit. It remains to show that the inequality (which is open!) is preserved. But if we know that $s \in [0, 1]$ satisfies the hypotheses of the theorem then $||A'_s||_{L^4} \leq C||A'_s||_{L^2_1} < 2NC||F'_s||_{L^2} \leq \eta$ by the choice of ζ and hence by the lemma we first proved $||A'_s||_{L^2_1} \leq N||F'_s||_{L^2}$. This condition is closed and is strictly stronger than $||A_s||_{L^2_1} < 2N||F'_s||_{L^2}$ hence the open condition is preserved in the limit.