Lecture 17: Gauge fixing I

Jonathan Evans

22nd November 2011

Our aim today is to prove

Theorem (Uhlenbeck)

Consider the trivial $U(n)$-bundle over the unit 2-disc. There exist $\kappa>0$ and $c<\infty$ such that if $\nabla=d+A$ is a connection with $\left\|F_{\nabla}\right\|_{L^{2}} \leq \kappa$ then there is an L_{2}^{2}-gauge transformation u such that $u \nabla=d+A^{\prime}$ satisfies

- $d^{*} A^{\prime}=0$,
- $\left\|A^{\prime}\right\|_{L_{1}^{2}} \leq c\left\|F_{\nabla^{\prime}}\right\|_{L^{2}}$.

Moreover if we require the boundary condition that the radial component $\sum_{i}\left(x_{i} / r\right) A_{i}$ tends to zero as $r \rightarrow 1$ then the resulting A^{\prime} is unique up to constant gauge transformations.

As when we proved that a unitary connection induces the structure of a holomorphic vector bundle, it will be convenient to work over a compact space so we use S^{2} instead of the 2-disc (in this we follow Donaldson-Kronheimer rather than Uhlenbeck's original proof).

Theorem

There are constants ζ and N such that if $\nabla_{t}=d+A_{t}$ is a path of connections on the trivial $U(n)$-bundle over S^{2} with $A_{0}=0$ and $\left\|F_{\nabla_{t}}\right\|_{L^{2}} \leq \zeta$ then there exist L_{2}^{2}-gauge transformations u_{t} such that $u_{t} \nabla_{t}=d+A_{t}^{\prime}$ satisfy $d^{*} A_{t}^{\prime}=0$ and $\left\|A_{t}^{\prime}\right\|_{L_{1}^{2}}<2 N\left\|F_{\nabla_{t}}\right\|_{L^{2}}$ (unless $A_{t}^{\prime}=0$).

Let's write $S \subset[0,1]$ for the subset of the interval consisting of t for which the conclusion of the theorem holds.

To deduce Uhlenbeck's theorem from this we take our connection of interest ∇ over the disc and construct a connection on the sphere by pulling back along the map p which collapses the 2 -sphere onto a disc (by projecting onto a plane through the equator). Obviously this is not smooth along the equator, so instead we take a sequence of smooth approximations p_{ϵ} to p which differ only in an ϵ neighbourhood of the equator. Now suppose ∇ has curvature L^{2}-bounded above by $\zeta / \sqrt{2}-\epsilon^{\prime}$. Then for small enough $\epsilon, p_{\epsilon}^{*} \nabla$ has curvature L^{2}-bounded above by ζ. Moreover we can define a path of connections $\nabla_{t}, t \in[0,1]$ with $\nabla_{0}=d$ by setting $A_{t}(x)=t A(t x)$ (here $x \mapsto t x$ is just rescaling the ball).

Since

$$
\begin{aligned}
\left\|F_{\nabla_{t}}\right\|_{L^{2}} & =\sqrt{\int_{x \leq 1}\left|t^{2} F_{\nabla}(t x)\right|^{2} d \operatorname{vol}_{x}} \\
& =\sqrt{\int_{y \leq t} t^{4} t^{-2}\left|F_{\nabla}\right|^{2} d \mathrm{vol}_{y}} \\
& \leq t\left|F_{\nabla}\right|_{L^{2}} \\
& \leq \zeta / \sqrt{2}-\epsilon^{\prime}
\end{aligned}
$$

we see that $p_{\epsilon}^{*} \nabla_{t}$ is a path of connections satisfying the hypotheses of the theorem. This allows us to put ∇ in Coulomb gauge on a slightly smaller ball, but that's all we need.

The idea will be to prove that S is both closed and open. Since $0 \in S$ the theorem will follow. First we prove a lemma.

Lemma

Let $d+A$ be a connection on the trivial bundle over S^{2} such that $d^{*} A=0$. Then there are constants $N, \eta>0$ such that

$$
\|A\|_{L^{4}}<\eta \Longrightarrow\|A\|_{L_{1}^{2}} \leq N\left\|F_{\nabla}\right\|_{L^{2}}
$$

Proof.

Since d is elliptic on $\operatorname{ker}\left(d^{*}\right)$ (think about it! This is just ellipticity of the Laplacian) and since it has no kernel (otherwise there would be nontrivial harmonic 1-forms on S^{2} and hence a nontrivial class in $H^{1}\left(S^{2}\right)$) we have

$$
\|A\|_{L_{1}^{2}} \leq C\|d A\|_{L^{2}}
$$

Since $F_{\nabla}=d A+[A, A]$ and $\|[A, A]\|_{L^{2}} \leq\|A\|_{L^{4}}^{2} \leq C^{\prime}\|A\|_{L^{4}}\|A\|_{L_{1}^{2}}$ by Hölder and Sobolev we get

$$
\|A\|_{L_{1}^{2}} \leq C\|d A\|_{L^{2}} \leq C\|F\|_{L^{2}}+C C^{\prime}\|A\|_{L^{4}}\|A\|_{L_{1}^{2}}
$$

and when $\|A\|_{L^{4}}<1 /\left(2 C C^{\prime}\right)=\eta$ we can take the last term over to the other side and get

$$
\|A\|_{L_{1}^{2}} \leq N\|F\|_{L^{2}}
$$

(where $N=2 C$).

Now we take $\zeta<\frac{\eta}{2 C N}$ where η and N are given by this lemma and C is the Sobolev constant for the embedding $L_{1}^{2} \subset L^{4}$.

Lemma

Given a path satisfying the hypotheses of the theorem, S is closed.

Proof.

Let $t_{i} \in S$ be a sequence converging to some t_{∞} and write $A_{t_{i}}=A_{i}$, so that there exist gauge transformations u_{i} such that $A_{i}^{\prime}=u_{i} A_{i}$ satisfies the conclusions of the theorem. Certainly as $i \rightarrow \infty, A_{i} \rightarrow A_{t_{\infty}}=A_{\infty}$. Since A_{i}^{\prime} is bounded in L_{1}^{2} there is a weakly convergent subsequence $A_{i}^{\prime} \rightarrow A_{\infty}^{\prime}$. We want to construct an L_{2}^{2}-gauge transformation u_{∞} from A_{∞} to A_{∞}^{\prime}. But

$$
\begin{aligned}
A_{i}^{\prime} & =u_{i}^{-1} A_{i} u_{i}+u_{i}^{-1} d u_{i} \\
\text { i.e. } d u_{i} & =u_{i} A_{i}^{\prime}-A_{i} u_{i}
\end{aligned}
$$

Proof, continued:

Since $u_{i}(x) \in U(n)$ which is compact we have $\left|u_{i}\right|_{L^{2}} \leq c$ and

$$
\left|d u_{i}\right|_{L^{4}} \leq c\left(\left|A_{i}^{\prime}\right|_{L^{4}}+\left|A_{i}\right|_{L^{4}}\right) \leq c C\left(\left|A_{i}^{\prime}\right|_{L_{1}^{2}}+\left|A_{i}\right|_{L_{1}^{2}}\right)
$$

Therefore $\left|u_{i}\right|_{L_{1}^{4}}$ is bounded uniformly in i and hence weakly converges to some u in L_{1}^{4}. We need to show that u is in L_{2}^{2}, but we know that

$$
d u=u A^{\prime}-A u
$$

and now I'm going to do something I said I wouldn't, which is to use another Sobolev theorem I haven't previously stated. It follows from Palais "Foundations of Global Analysis", Theorem 9.5(2) that $L_{1}^{4} \otimes L_{1}^{2} \rightarrow L_{1}^{2}$ is a well-defined Sobolev multiplication in 2-d. Therefore since $u \in L_{1}^{4}$ and $A, A^{\prime} \in L_{1}^{2}$ we get $d u \in L_{1}^{2}$ and hence $u \in L_{2}^{2}$.

Proof.

The coclosedness equation is certainly preserved in the limit. It remains to show that the inequality (which is open!) is preserved. But if we know that $s \in[0,1]$ satisfies the hypotheses of the theorem then $\left\|A_{s}^{\prime}\right\|_{L^{4}} \leq C\left\|A_{s}^{\prime}\right\|_{L_{1}^{2}}<2 N C\left\|F_{s}^{\prime}\right\|_{L^{2}} \leq \eta$ by the choice of ζ and hence by the lemma we first proved $\left\|A_{s}^{\prime}\right\|_{L_{1}^{2}} \leq N\left\|F_{s}^{\prime}\right\|_{L^{2}}$. This condition is closed and is strictly stronger than $\left\|A_{s}\right\|_{L_{1}^{2}}<2 N\left\|F_{s}^{\prime}\right\|_{L^{2}}$ hence the open condition is preserved in the limit.

