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Our aim today is to prove

Theorem (Uhlenbeck)

Consider the trivial U(n)-bundle over the unit 2-disc. There exist κ > 0
and c <∞ such that if ∇ = d + A is a connection with ||F∇||L2 ≤ κ then
there is an L2

2-gauge transformation u such that u∇ = d + A′ satisfies

d∗A′ = 0,

||A′||L2
1
≤ c ||F∇′ ||L2 .

Moreover if we require the boundary condition that the radial component∑
i (xi/r)Ai tends to zero as r → 1 then the resulting A′ is unique up to

constant gauge transformations.
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As when we proved that a unitary connection induces the structure of a
holomorphic vector bundle, it will be convenient to work over a compact
space so we use S2 instead of the 2-disc (in this we follow
Donaldson-Kronheimer rather than Uhlenbeck’s original proof).

Theorem

There are constants ζ and N such that if ∇t = d + At is a path of
connections on the trivial U(n)-bundle over S2 with A0 = 0 and
||F∇t ||L2 ≤ ζ then there exist L2

2-gauge transformations ut such that
ut∇t = d + A′t satisfy d∗A′t = 0 and ||A′t ||L2

1
< 2N||F∇t ||L2 (unless

A′t = 0).

Let’s write S ⊂ [0, 1] for the subset of the interval consisting of t for
which the conclusion of the theorem holds.
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To deduce Uhlenbeck’s theorem from this we take our connection of
interest ∇ over the disc and construct a connection on the sphere by
pulling back along the map p which collapses the 2-sphere onto a disc (by
projecting onto a plane through the equator). Obviously this is not smooth
along the equator, so instead we take a sequence of smooth
approximations pε to p which differ only in an ε neighbourhood of the
equator. Now suppose ∇ has curvature L2-bounded above by ζ/

√
2− ε′.

Then for small enough ε, p∗ε∇ has curvature L2-bounded above by ζ.
Moreover we can define a path of connections ∇t , t ∈ [0, 1] with ∇0 = d
by setting At(x) = tA(tx) (here x 7→ tx is just rescaling the ball).
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Since

||F∇t ||L2 =

√∫
x≤1
|t2F∇(tx)|2dvolx

=

√∫
y≤t

t4t−2|F∇|2dvoly

≤ t|F∇|L2

≤ ζ/
√

2− ε′

we see that p∗ε∇t is a path of connections satisfying the hypotheses of the
theorem. This allows us to put ∇ in Coulomb gauge on a slightly smaller
ball, but that’s all we need.

Jonathan Evans () Lecture 17: Gauge fixing I 22nd November 2011 5 / 10



The idea will be to prove that S is both closed and open. Since 0 ∈ S the
theorem will follow. First we prove a lemma.

Lemma

Let d + A be a connection on the trivial bundle over S2 such that
d∗A = 0. Then there are constants N, η > 0 such that

||A||L4 < η =⇒ ||A||L2
1
≤ N||F∇||L2 .
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Proof.

Since d is elliptic on ker(d∗) (think about it! This is just ellipticity of the
Laplacian) and since it has no kernel (otherwise there would be nontrivial
harmonic 1-forms on S2 and hence a nontrivial class in H1(S2)) we have

||A||L2
1
≤ C ||dA||L2

Since F∇ = dA + [A,A] and ||[A,A]||L2 ≤ ||A||2L4 ≤ C ′||A||L4 ||A||L2
1

by
Hölder and Sobolev we get

||A||L2
1
≤ C ||dA||L2 ≤ C ||F ||L2 + CC ′||A||L4 ||A||L2

1

and when ||A||L4 < 1/(2CC ′) = η we can take the last term over to the
other side and get

||A||L2
1
≤ N||F ||L2

(where N = 2C ).
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Now we take ζ < η
2CN where η and N are given by this lemma and C is

the Sobolev constant for the embedding L2
1 ⊂ L4.

Lemma

Given a path satisfying the hypotheses of the theorem, S is closed.

Proof.

Let ti ∈ S be a sequence converging to some t∞ and write Ati = Ai , so
that there exist gauge transformations ui such that A′i = uiAi satisfies the
conclusions of the theorem. Certainly as i →∞, Ai → At∞ = A∞. Since
A′i is bounded in L2

1 there is a weakly convergent subsequence A′i → A′∞.
We want to construct an L2

2-gauge transformation u∞ from A∞ to A′∞.
But

A′i = u−1
i Aiui + u−1

i dui

i.e. dui = uiA
′
i − Aiui
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Proof, continued:

Since ui (x) ∈ U(n) which is compact we have |ui |L2 ≤ c and

|dui |L4 ≤ c(|A′i |L4 + |Ai |L4) ≤ cC (|A′i |L2
1

+ |Ai |L2
1
)

Therefore |ui |L4
1

is bounded uniformly in i and hence weakly converges to

some u in L4
1. We need to show that u is in L2

2, but we know that

du = uA′ − Au

and now I’m going to do something I said I wouldn’t, which is to use
another Sobolev theorem I haven’t previously stated. It follows from Palais
“Foundations of Global Analysis”, Theorem 9.5(2) that L4

1 ⊗ L2
1 → L2

1 is a
well-defined Sobolev multiplication in 2-d. Therefore since u ∈ L4

1 and
A,A′ ∈ L2

1 we get du ∈ L2
1 and hence u ∈ L2

2.
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Proof.

The coclosedness equation is certainly preserved in the limit. It remains to
show that the inequality (which is open!) is preserved. But if we know
that s ∈ [0, 1] satisfies the hypotheses of the theorem then
||A′s ||L4 ≤ C ||A′s ||L2

1
< 2NC ||F ′s ||L2 ≤ η by the choice of ζ and hence by

the lemma we first proved ||A′s ||L2
1
≤ N||F ′s ||L2 . This condition is closed

and is strictly stronger than ||As ||L2
1
< 2N||F ′s ||L2 hence the open condition

is preserved in the limit.
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