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It remains to show that

Proposition

If the infimum of the Yang-Mills functional on a complexified L2
2-gauge

orbit Orb(E) is achieved by some L2
1-connection ∇ then ∇ is smooth, has

constant central curvature and is the unique such connection up to
(unitary) gauge transformations.

The idea of the proof is vary ∇ in a well-chosen direction ∇t inside its
gauge orbit and show that unless YM(∇) = 0 we can make YM(∇t)
strictly smaller. As usual a “well-chosen direction” means the solution to a
well-chosen PDE...
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Proof.

Consider the operator ∇∗∇ acting on L2
2 self-adjoint sections of End(E ).

This is linear and elliptic because to a first approximation it’s just a
Laplacian. Its kernel consists of constant scalar matrices, because any
other element of the kernel would satisfy

0 = 〈∇∗∇σ, σ〉 = 〈∇σ,∇σ〉

i.e. ∇σ = 0 so in particular 0 = ∇0,1σ = ∂̄Eσ and σ is a holomorphic
section whose eigenspaces decompose E holomorphically. By the analogue
of the Hodge theorem (where we need to take a Laplacian with nonsmooth
coefficients since ∇ is only in the L2

1-completion of A) in this setting there
is a self-adjoint section h ∈ L2

2 such that

i∇∗∇h = 2πiµ+ ?F∇

since 2πiµ(E)id + ?F∇ is orthogonal to the constant scalars.
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Proof, continued:

Now for small t, 1 + th =: gt is a complexified gauge transformation
(because GL(n,C) is open in the space of all matrices). Let ∇t = gt∇ so
by the formula for the complexified gauge action

gt∇ = ∇− (∇0,1gt)g−1t + ((∇0,1gt)g−1t )†

so the curvature of ∇t changes to

F∇t = F∇ −∇1,0((∇0,1gt)g−1t ) +∇0,1(g−1t (∇1,0gt))

− (∇0,1g)g−2(∇1,0g) + g−1(∇1,0g)(∇0,1g)g−1

= F∇ − t(∇1,0∇0,1 −∇0,1∇1,0)h + ε(t, h)

where the error term has L2-norm bounded above by C ||h||L22t2 for small
t.
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Proof, concluded:

Since ∇∗∇ = i ? (∇1,0∇0,1 −∇0,1∇1,0) we get

YM(∇t) = YM(∇)(1− t) +O(t2)

Since ∇ infimises YM over its GC-orbit (and since ∇t ∈ GC · ∇) we see
that YM(∇) = 0.

It remains to see that a) ∇ is smooth; b) ∇ is unique up to gauge
transformations. Smoothness follows from the fact that it is the solution
to an elliptic equation (Yang-Mills). Strictly speaking we need to be
careful because the Yang-Mills equations are not actually elliptic (in
particular their solution spaces contain infinite-dimensional gauge orbits).
When we prove Uhlenbeck’s theorem we will come to understand the sense
in which the equations are elliptic, and from that we will get regularity for
their solutions from general elliptic theory.
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To see that ∇ is the unique constant central curvature connection in its
complexified gauge orbit (up to (non-complexified) gauge
transformations), suppose that g∇ is another constant central curvature
connection (for some g ∈ GC). Since every complex matrix can be written
in the form PU with U unitary and P positive definite Hermitian matrix,
we can write g = pu with u ∈ G and g † = g . Therefore WLOG g = g †.
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Now Fg∇ = F∇ = −2πiµ(E) implies that

∇0,1∇1,0g2 = −((∇0,1g2)g−1)((∇0,1g2)g−1)†

and the trace of this implies that (for τ = Tr(g2))

∆τ ≤ 0

with equality if and only if ∇0,1g2 = 0. The maximum principle for
subharmonic functions implies that ∆τ ≡ 0 and ∇0,1g2 = ∇1,0g2 = 0.
Unless g is a constant scalar its eigenspaces decompose E and hence
∇ = g∇. This proves uniqueness.
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We have now seen a proof of the Narasimhan-Seshadri theorem modulo
Uhlenbeck compactness.

Theorem

Let ∇i be a sequence of L2
1-connections on a principal U(n)-bundle over a

Riemann surface. Suppose that ||F∇i
||2L ≤ C . Then there exists a

subsequence ∇ij and L2
2-gauge transformations uj such that uj∇ij

converges weakly in L2
1 to a limiting connection ∇∞ and ||F∇∞ ||L2 ≤ C .

I will now outline a sketch proof of this theorem. We may or may not fill
in all the details.
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The first step is to prove a gauge-fixing theorem. Remember that in
magnetostatics we have a (let’s say compactly-supported) vector potential
A and we can change it to A +∇f for any (compactly-supported)
function f . The Maxwell equations then become
∇× (∇× A) = ∇(∇ · A)−∇2A = µ0J. Note that ∇2 is the Laplacian
and hence the equation looks elliptic except for the screwy first term. If
only it were to vanish...but we can make it vanish! We only need to find
an A′ = A +∇f which solves ∇ ·A′ = 0 but this means finding a function
f such that ∇2f = −∇ · A. But this is Poisson’s equation for f and so
admits a unique compactly-supported solution (given explicitly by a
formula involving an integral and the Green’s function for ∇2)!
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The analogue of this local gauge fixing for 2D Yang-Mills is:

Theorem (Uhlenbeck)

Consider the trivial U(n)-bundle over the unit 2-disc. There exist κ > 0
and c <∞ such that if ∇ = d + A is a connection with ||F∇||L2 ≤ κ then
there is an L2

2-gauge transformation u such that u∇ = d + A′ satisfies

d∗A′ = 0,

||A′||L21 ≤ c ||F∇′ ||L2 .

so not only do we have a nice gauge-fixing condition but we have control
over the L2

1-norm of the gauge-fixed connection matrices.
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Now it the Banach-Alaoglu theorem tells us that when a sequence in a
Hilbert space is bounded it has a weakly-convergent subsequence; thus we
see how Uhlenbeck’s gauge-fixing theorem gives Uhlenbeck compactness
for connections on the trivial bundle over the disc. To go to the global
result requires a patching argument which we will not go into. The
regularity properties of Yang-Mills connections which we used at the end
of the proof of the Narasimhan-Seshadri theorem also follow relatively
easily from this gauge fixing theorem because (just as in magnetostatics) a
solution to Yang-Mills which is in Coulomb gauge satisfies an elliptic
equation. Next time we will prove the gauge fixing theorem.
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