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Today we continue the proof of...

Theorem (Narasimhan-Seshadri, Donaldson)

An indecomposable Hermitian holomorphic vector bundle E on a Riemann
surface (M, g) is stable if and only if there is a compatible unitary
connection on E with constant central curvature

?F∇ = −2πiµ(E).

...or equivalently...

Theorem

Every stable GC-orbit on A contains a unique G-orbit of solutions to
YM−1(0) where

YM(∇) = N

(
?F∇
2πi

+ µ

)
and N is this funny norm we defined last time.
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Now we start filling in the details from the sketch proof. We will write
Orb(E) for the orbit GC · ∇ where ∇ is a connection compatible with E .

Lemma

Let E be a holomorphic bundle over M. Then either infOrb(E) YM is
attained in the orbit Orb(E) or there is a holomorphic bundle F 6∼= E such
that

rank(F) = rank(E), deg(F) = deg(E),

infOrb(F) YM ≤ infOrb(E) YM,

Hom(E ,F) 6= 0.
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Here’s some preliminary stuff. First recall the concept of weak convergence
in a Hilbert space means: vi → v weakly if 〈vi ,w〉 → 〈v ,w〉 for all w .

Exercise

Give an example of a sequence of functions in L2([0, 1]) which weakly
converge to 0 but don’t actually converge. If a sequence of L2

1-functions
on a Riemann surface weakly converge in L2

1 why must they converge in
L4? (Hint: Uniform boundedness principle). Note that YM is not
obviously continuous with respect to the weak topology on L2

1-connections.
However you should show that if ∇i → ∇ weakly in L2

1 then
YM(∇) = lim inf YM(∇i ).

Theorem (Uhlenbeck compactness)

Let ∇i ∈ A be a sequence of L2
1-connections with bounded curvature

||Fi ||L2 . Then there is a subsequence and a collection of L2
2-gauge

transformations ui such that ui∇i converges weakly in L2
1.

We will prove this theorem in a few lectures’ time. This is the main
analytical input.
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Proof.

Let ∇i be an infimising sequence for YM|Orb(E). The curvature of the ∇i

are L2-bounded since N is equivalent to L2 and certainly they are bounded
in N. Uhlenbeck compactness gives us a subsequence with gauge
transformations ui such that ui∇i → ∇ weakly in L2

1. Moreover,

YM(∇) ≤ lim inf YM(∇i ) = inf
Orb(E)

YM

Now ∇ defines a holomorphic structure E∇ with Orb(E∇) = GC∇ (we
need to be slightly careful here because ∇ is only L2

1 - we’ll sort this out
later). We need to show that Hom(E , E∇) 6= 0: the dichotomy of the
theorem is then just the question of whether E ∼= E∇ or not.
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Proof (continued):

To study holomorphic homomorphisms E → E∇ we use the connection
∇Hom induced by ∇0 and ∇ on the tensor product E ∗ ⊗ E . This is
compatible with the holomorphic structure coming from E∗ ⊗ E∇ and gives
a ∂̄-operator

∂̄Hom : Ω0(Hom(E ,E ))→ Ω0,1(Hom(E ,E ))

whose holomorphic sections ∂̄Homσ are precisely the holomorphic
homomorphisms Hom(E , E∇). If there are none of these then ∂̄Hom has no
kernel and since it is an elliptic operator, there is a C such that for all σ

C ||σ||L21 ≤ ||∂̄Homσ||L2

(this is the enhanced elliptic inequality for operators D with vanishing
kernel - it would hold more generally for σ ∈ ker(D)⊥). The Sobolev
inequality implies ||σ||L21 ≥ C ′||σ||L4 so ||∂̄Homσ||L2 ≥ C ′′||σ||L4 .
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Proof (concluded):

The idea will be to derive a contradiction by showing that for large i ,
Hom(E , E) = Hom(E , E∇i

) = 0. We have(
∂̄Hom,i − ∂̄Hom

)
σ = (∇i −∇)0,1σ

(here ∂̄Hom,i is the connection on E ∗ ⊗ E coming from ∇0 and ∇i ) so the
Hölder inequality gives

||
(
∂̄Hom − ∂̄Hom,i

)
σ||L2 ≤ C ′′′||∇i −∇||L4 ||σ||L4

and
||∂̄Hom,iσ||L2 ≥

(
C ′′ − C ′′′||∇i −∇||L4

)
||σ||L4

However uniform boundedness, a weakly convergent sequence is bounded
in L2

1 and by Rellich compactness L2
1 ↪→ L4 is compact so ∇i → ∇

(strongly) in L4. This means that even for large i , Hom(E , E∇i
) = 0,

contradicting the fact that ∇i is compatible with E and hence there should
be an isomorphism E → E∇i

!
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We will finish today by showing that for any L2
1-connection ∇′ there is an

L2
2 complexified gauge transformation taking it to a smooth connection,

which proves that the L2
2-complexified gauge orbits on the L2

1-completion
of A are in bijection with the isomorphism classes of holomorphic vector
bundles.
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Lemma

Fix an L2
1-connection ∇′ = ∇+ B (∇ is a smooth reference connection).

The action F : GC → A (sending g to g∇′) of the L2
2-complexified gauge

transformations on the L2
1-connections has the property that d1F is

Fredholm. Here d1F : L2
2(Ω0(M; ad(PC)))→ L2

1(Ω1(M; ad(P))) denotes
the derivative at 1 ∈ GC.

Proof.

We can think of GC just acting on the (0, 1)-parts of connections via

(g∇′)0,1 = (∇′)0,1 − (∇′0,1g)g−1

hence we have d1F (ε) = −(∇′)0,1ε = −∇0,1ε− [B, ε].
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Proof, continued.

The first part is certainly Fredholm (ellipticity of ∇0,1) and the second
part is compact because the action of an ε ∈ L2

2 on a B ∈ L2
1 factors

through the (compact) inclusion of L2
2 ⊂ L2

3/2 (or any other intermediate

Sobolev space). If the concept of 3/2-differentiable disturbs you, join the
club. However, one can make rigorous sense of this Sobolev space using
Fourier analysis (where K derivatives corresponds under Fourier transform
to multiplying with ξk , and k doesn’t have to be an integer to use as an
exponent).

In particular we see (from the Banach space implicit function theorem)
that there are neighbourhoods GC ⊃ U 3 1 and A ⊃ V 3 ∇′ such that for
∇′′ ∈ V , U · ∇′′ is a smooth Banach submanifold of V with finite
codimension (equal to coker(∇′)0,1, which we can identify we a Dolbeaut
cohomology group H0,1(End(E))).
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Lemma

Every L2
2-complexified gauge orbit in the space of L2

1-connections contains
a smooth connection.

Proof.

Let N be a finite-dimensional subspace of A transversal to the
L2
2-complexified gauge orbit through the fixed L2

1-connection ∇′. On some
small neighbourhood V of ∇′ there is a projection π : V → N with
π−1(∇′) = U(∇′) for some open neighbourhood U 3 1 in GC. Given r + 1
points B1, . . . ,Br+1 in V (r = dim(N)) we define an affine linear map fB
from the r -simplex σr into V taking the vertices to the Bi . Then
π ◦ fB : σr → N is a continuous map depending continuously on B.
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Proof, continued:

If we pick B so that ∇′ is at their barycentre then the restriction of π ◦ fB
to the boundary represents the generator of Hr (N \ A;Z) and hence π ◦ fB
must hit ∇′ at some point in the interior of the simplex. This remains true
(by continuity) when we replace B by a nearby collection of points C . We
can assume that the Ci are smooth since smooth connections are dense in
L2
1-connections. Since linear combinations of smooth connections are again

smooth, there is a point p ∈ σr such that fC (p) is a smooth connection
living in π−1(∇′), which is a subset of the L2

2-complexified gauge orbit of
∇′.

Here again we have a gorgeous proof ripped straight out of Atiyah and
Bott. You should go and read it.
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