Lecture 14: Narasimhan-Seshadri theorem II

Jonathan Evans

10th November 2011

Jonathan Evans ()

Lecture 14: Narasimhan-Seshadri theorem II

10th November 2011

- 一司

3

1 / 12

Today we continue the proof of...

Theorem (Narasimhan-Seshadri, Donaldson)

An indecomposable Hermitian holomorphic vector bundle \mathcal{E} on a Riemann surface (M,g) is stable if and only if there is a compatible unitary connection on \mathcal{E} with constant central curvature

$$\star F_{
abla} = -2\pi i \mu(\mathcal{E}).$$

...or equivalently...

Theorem

Every stable $\mathcal{G}_{\mathbb{C}}$ -orbit on \mathcal{A} contains a unique \mathcal{G} -orbit of solutions to $\mathcal{YM}^{-1}(0)$ where

$$\mathcal{YM}(
abla) = \mathcal{N}\left(rac{\star F_{
abla}}{2\pi i} + \mu
ight)$$

and N is this funny norm we defined last time.

O > <
 O >

Now we start filling in the details from the sketch proof. We will write $\mathfrak{Orb}(\mathcal{E})$ for the orbit $\mathcal{G}_{\mathbb{C}} \cdot \nabla$ where ∇ is a connection compatible with \mathcal{E} .

Lemma

Let \mathcal{E} be a holomorphic bundle over M. Then either $\inf_{\mathfrak{Orb}(\mathcal{E})} \mathcal{YM}$ is attained in the orbit $\mathfrak{Orb}(\mathcal{E})$ or there is a holomorphic bundle $\mathcal{F} \ncong \mathcal{E}$ such that

- $\operatorname{rank}(\mathcal{F}) = \operatorname{rank}(\mathcal{E}), \ \operatorname{deg}(\mathcal{F}) = \operatorname{deg}(\mathcal{E}),$
- $\inf_{\mathfrak{Orb}(\mathcal{F})} \mathcal{YM} \leq \inf_{\mathfrak{Orb}(\mathcal{E})} \mathcal{YM}$,
- Hom $(\mathcal{E}, \mathcal{F}) \neq 0$.

< (T) >

Here's some preliminary stuff. First recall the concept of *weak convergence* in a Hilbert space means: $v_i \rightarrow v$ weakly if $\langle v_i, w \rangle \rightarrow \langle v, w \rangle$ for all w.

Exercise

Give an example of a sequence of functions in $L^2([0,1])$ which weakly converge to 0 but don't actually converge. If a sequence of L_1^2 -functions on a Riemann surface weakly converge in L_1^2 why must they converge in L^4 ? (Hint: Uniform boundedness principle). Note that \mathcal{YM} is not obviously continuous with respect to the weak topology on L_1^2 -connections. However you should show that if $\nabla_i \to \nabla$ weakly in L_1^2 then $\mathcal{YM}(\nabla) = \liminf \mathcal{YM}(\nabla_i)$.

Theorem (Uhlenbeck compactness)

Let $\nabla_i \in A$ be a sequence of L_1^2 -connections with bounded curvature $||F_i||_{L^2}$. Then there is a subsequence and a collection of L_2^2 -gauge transformations u_i such that $u_i \nabla_i$ converges weakly in L_1^2 .

We will prove this theorem in a few lectures' time. This is the main analytical input.

Proof.

Let ∇_i be an infimising sequence for $\mathcal{YM}|_{\mathfrak{Otb}(\mathcal{E})}$. The curvature of the ∇_i are L^2 -bounded since N is equivalent to L^2 and certainly they are bounded in N. Uhlenbeck compactness gives us a subsequence with gauge transformations u_i such that $u_i \nabla_i \to \nabla$ weakly in L^2_1 . Moreover,

$$\mathcal{YM}(
abla) \leq \liminf \mathcal{YM}(
abla_i) = \inf_{\mathfrak{Orb}(E)} \mathcal{YM}(
abla_i)$$

Now ∇ defines a holomorphic structure \mathcal{E}_{∇} with $\mathfrak{Orb}(\mathcal{E}_{\nabla}) = \mathcal{G}_{\mathbb{C}}\nabla$ (we need to be slightly careful here because ∇ is only L_1^2 - we'll sort this out later). We need to show that $\operatorname{Hom}(\mathcal{E}, \mathcal{E}_{\nabla}) \neq 0$: the dichotomy of the theorem is then just the question of whether $\mathcal{E} \cong \mathcal{E}_{\nabla}$ or not.

5 / 12

Proof (continued):

To study holomorphic homomorphisms $\mathcal{E} \to \mathcal{E}_{\nabla}$ we use the connection ∇_{Hom} induced by ∇_0 and ∇ on the tensor product $E^* \otimes E$. This is compatible with the holomorphic structure coming from $\mathcal{E}^* \otimes \mathcal{E}_{\nabla}$ and gives a $\bar{\partial}$ -operator

$$\bar{\partial}_{\mathrm{Hom}}: \Omega^0(\mathrm{Hom}(E,E)) \to \Omega^{0,1}(\mathrm{Hom}(E,E))$$

whose holomorphic sections $\bar{\partial}_{Hom}\sigma$ are precisely the holomorphic homomorphisms $Hom(\mathcal{E}, \mathcal{E}_{\nabla})$. If there are none of these then $\bar{\partial}_{Hom}$ has no kernel and since it is an elliptic operator, there is a C such that for all σ

$$C||\sigma||_{L^2_1} \le ||\bar{\partial}_{\operatorname{Hom}}\sigma||_{L^2}$$

(this is the enhanced elliptic inequality for operators D with vanishing kernel - it would hold more generally for $\sigma \in \ker(D)^{\perp}$). The Sobolev inequality implies $||\sigma||_{L^2_1} \ge C'||\sigma||_{L^4}$ so $||\bar{\partial}_{\operatorname{Hom}}\sigma||_{L^2} \ge C''||\sigma||_{L^4}$.

(D) (B) (C) (C)

Proof (concluded):

The idea will be to derive a contradiction by showing that for large *i*, $\operatorname{Hom}(\mathcal{E}, \mathcal{E}) = \operatorname{Hom}(\mathcal{E}, \mathcal{E}_{\nabla_i}) = 0$. We have

$$\left(\bar{\partial}_{\mathrm{Hom},i} - \bar{\partial}_{\mathrm{Hom}}\right)\sigma = (\nabla_i - \nabla)^{0,1}\sigma$$

(here $\bar{\partial}_{\text{Hom},i}$ is the connection on $E^* \otimes E$ coming from ∇_0 and ∇_i) so the Hölder inequality gives

$$||\left(ar\partial_{\mathrm{Hom}} - ar\partial_{\mathrm{Hom},i}
ight)\sigma||_{L^2} \leq \mathcal{C}'''||
abla_i -
abla||_{L^4}||\sigma||_{L^4}$$

and

$$||\bar{\partial}_{\mathrm{Hom},i}\sigma||_{L^{2}} \geq \left(\mathcal{C}'' - \mathcal{C}'''||\nabla_{i} - \nabla||_{L^{4}}\right)||\sigma||_{L^{4}}$$

However uniform boundedness, a weakly convergent sequence is bounded in L_1^2 and by Rellich compactness $L_1^2 \hookrightarrow L^4$ is compact so $\nabla_i \to \nabla$ (strongly) in L^4 . This means that even for large *i*, $\operatorname{Hom}(\mathcal{E}, \mathcal{E}_{\nabla_i}) = 0$, contradicting the fact that ∇_i is compatible with \mathcal{E} and hence there should be an isomorphism $\mathcal{E} \to \mathcal{E}_{\nabla_i}$! We will finish today by showing that for any L_1^2 -connection ∇' there is an L_2^2 complexified gauge transformation taking it to a smooth connection, which proves that the L_2^2 -complexified gauge orbits on the L_1^2 -completion of \mathcal{A} are in bijection with the isomorphism classes of holomorphic vector bundles.

Lemma

Fix an L_1^2 -connection $\nabla' = \nabla + B$ (∇ is a smooth reference connection). The action $F : \mathcal{G}_{\mathbb{C}} \to \mathcal{A}$ (sending g to $g\nabla'$) of the L_2^2 -complexified gauge transformations on the L_1^2 -connections has the property that d_1F is Fredholm. Here $d_1F : L_2^2(\Omega^0(M; \operatorname{ad}(P_{\mathbb{C}}))) \to L_1^2(\Omega^1(M; \operatorname{ad}(P)))$ denotes the derivative at $1 \in \mathcal{G}_{\mathbb{C}}$.

Proof.

We can think of $\mathcal{G}_{\mathbb{C}}$ just acting on the (0,1)-parts of connections via

$$(g
abla')^{0,1} = (
abla')^{0,1} - (
abla'^{0,1}g)g^{-1}$$

hence we have $d_1F(\epsilon) = -(\nabla')^{0,1}\epsilon = -\nabla^{0,1}\epsilon - [B,\epsilon].$

・ロト ・ 同ト ・ ヨト ・ ヨト

Proof, continued.

The first part is certainly Fredholm (ellipticity of $\nabla^{0,1}$) and the second part is compact because the action of an $\epsilon \in L_2^2$ on a $B \in L_1^2$ factors through the (compact) inclusion of $L_2^2 \subset L_{3/2}^2$ (or any other intermediate Sobolev space). If the concept of 3/2-differentiable disturbs you, join the club. However, one can make rigorous sense of this Sobolev space using Fourier analysis (where K derivatives corresponds under Fourier transform to multiplying with ξ^k , and k doesn't have to be an integer to use as an exponent).

In particular we see (from the Banach space implicit function theorem) that there are neighbourhoods $\mathcal{G}_{\mathbb{C}} \supset U \ni 1$ and $\mathcal{A} \supset V \ni \nabla'$ such that for $\nabla'' \in V$, $U \cdot \nabla''$ is a smooth Banach submanifold of V with finite codimension (equal to $\operatorname{coker}(\nabla')^{0,1}$, which we can identify we a Dolbeaut cohomology group $H^{0,1}(\operatorname{End}(\mathcal{E}))$).

- 32

Lemma

Every L_2^2 -complexified gauge orbit in the space of L_1^2 -connections contains a smooth connection.

Proof.

Let N be a finite-dimensional subspace of \mathcal{A} transversal to the L_2^2 -complexified gauge orbit through the fixed L_1^2 -connection ∇' . On some small neighbourhood V of ∇' there is a projection $\pi \colon V \to N$ with $\pi^{-1}(\nabla') = U(\nabla')$ for some open neighbourhood $U \ni 1$ in $\mathcal{G}_{\mathbb{C}}$. Given r + 1 points B_1, \ldots, B_{r+1} in V ($r = \dim(N)$) we define an affine linear map f_B from the r-simplex σ_r into V taking the vertices to the B_i . Then $\pi \circ f_B \colon \sigma_r \to N$ is a continuous map depending continuously on B.

Proof, continued:

If we pick B so that ∇' is at their barycentre then the restriction of $\pi \circ f_B$ to the boundary represents the generator of $H_r(N \setminus A; \mathbb{Z})$ and hence $\pi \circ f_B$ must hit ∇' at some point in the interior of the simplex. This remains true (by continuity) when we replace B by a nearby collection of points C. We can assume that the C_i are smooth since smooth connections are dense in L_1^2 -connections. Since linear combinations of smooth connections are again smooth, there is a point $p \in \sigma_r$ such that $f_C(p)$ is a smooth connection living in $\pi^{-1}(\nabla')$, which is a subset of the L_2^2 -complexified gauge orbit of ∇' .

Here again we have a gorgeous proof ripped straight out of Atiyah and Bott. You should go and read it.