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Today we continue the proof of...

Theorem (Narasimhan-Seshadri, Donaldson)

An indecomposable Hermitian holomorphic vector bundle £ on a Riemann
surface (M, g) is stable if and only if there is a compatible unitary
connection on £ with constant central curvature

*xFy = —2miu(E).

...or equivalently...

Theorem
Every stable Gc-orbit on A contains a unique G-orbit of solutions to
YM~L(0) where

YM(V) = N <ﬂ + u)

27

and N is this funny norm we defined last time.
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Now we start filling in the details from the sketch proof. We will write
Otb(&) for the orbit G¢ - V where V is a connection compatible with &.

Lemma

Let & be a holomorphic bundle over M. Then either info.yg) Y M is
attained in the orbit Otb(E) or there is a holomorphic bundle F % £ such
that

o rank(F) = rank(E), deg(F) = deg(&),
o infgtb(]_‘) yM < infotb(g) yM,
e Hom(&, F) #0.
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Here's some preliminary stuff. First recall the concept of weak convergence
in a Hilbert space means: v; — v weakly if (vi, w) — (v, w) for all w.

Exercise

Give an example of a sequence of functions in L?([0,1]) which weakly
converge to 0 but don't actually converge. If a sequence of L2-functions
on a Riemann surface weakly converge in L% why must they converge in
L*? (Hint: Uniform boundedness principle). Note that Y M is not
obviously continuous with respect to the weak topology on L%—connections.
However you should show that if V; — ¥V weakly in L2 then

YM(V) = liminf YM(V;).

Theorem (Uhlenbeck compactness)

Let V; € A be a sequence of L3-connections with bounded curvature
||Fi||12. Then there is a subsequence and a collection of L3-gauge
transformations u; such that u;V; converges weakly in L%.

We will prove this theorem in a few lectures’ time. This is the main
analytical input.
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Proof.

Let V; be an infimising sequence for Y M|o.p(g). The curvature of the V;
are L?-bounded since N is equivalent to L? and certainly they are bounded
in N. Uhlenbeck compactness gives us a subsequence with gauge
transformations u; such that u;V; — V weakly in L%. Moreover,

YM(V) <liminf YM(V;) = inf YM

Orb(E)
Now V defines a holomorphic structure &y with Otb(Ev) = GV (we
need to be slightly careful here because V is only L2 - we'll sort this out
later). We need to show that Hom(&, Ey) # 0: the dichotomy of the
theorem is then just the question of whether £ & Ev or not. O

v
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Proof (continued):

To study holomorphic homomorphisms & — £y we use the connection
VHom induced by Vg and V on the tensor product E* ® E. This is
compatible with the holomorphic structure coming from £* ® £¢ and gives
a g-operator

Otom : Q°(Hom(E, E)) — Q% (Hom(E, E))

whose holomorphic sections dfomo are precisely the holomorphic
homomorphisms Hom(&, £v). If there are none of these then Oom has no
kernel and since it is an elliptic operator, there is a C such that for all o

Cllollz < [10tomol] 2

(this is the enhanced elliptic inequality for operators D with vanishing
kernel - it would hold more generally for o € ker(D)1). The Sobolev
inequality implies ||of|;2 > C'||o]|pa so ||Otoma]|i2 > C"||o|| s O
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Proof (concluded):

The idea will be to derive a contradiction by showing that for large /,
Hom(€&, &) = Hom(&, Ey,) = 0. We have

(5Hom,i - 5Hom) 0 = (V, — V)O’IO'

(here éHom,,- is the connection on E* ® E coming from Vg and V;) so the
Holder inequality gives

| (Ottom — Fttom,i) olli2 < C"||Vi = Vl[gelolle

and _
18t0m,io |12 = (C" = C"[|V; = V||ps) ||o]].s

However uniform boundedness, a weakly convergent sequence is bounded
in L2 and by Rellich compactness L2 < L* is compact so V; — V
(strongly) in L*. This means that even for large i, Hom(&, £y,) = 0,
contradicting the fact that V; is compatible with £ and hence there should
be an isomorphism & — £y, ! O
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We will finish today by showing that for any L2-connection V' there is an
L3 complexified gauge transformation taking it to a smooth connection,
which proves that the L3-complexified gauge orbits on the L3-completion

of A are in bijection with the isomorphism classes of holomorphic vector
bundles.
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Lemma

Fix an L3-connection V' =V + B (V is a smooth reference connection).
The action F : Gc — A (sending g to gV') of the L3-complexified gauge
transformations on the L%-connections has the property that di F is
Fredholm. Here diF : L3(Q°(M;ad(Pc))) — L2(QY(M; ad(P))) denotes
the derivative at 1 € Gc.

Proof.
We can think of G¢ just acting on the (0, 1)-parts of connections via

(gv/)O,l — (vl)O,l . (VIO,lg)g—l

hence we have di F(e) = —(V/)%1e = —VO%le — [B, €]. O
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Proof, continued.

The first part is certainly Fredholm (ellipticity of V%1) and the second
part is compact because the action of an € € L2 on a B € L2 factors
through the (compact) inclusion of L3 C L%/z (or any other intermediate
Sobolev space). If the concept of 3/2-differentiable disturbs you, join the
club. However, one can make rigorous sense of this Sobolev space using
Fourier analysis (where K derivatives corresponds under Fourier transform
to multiplying with €, and k doesn't have to be an integer to use as an
exponent). O

In particular we see (from the Banach space implicit function theorem)
that there are neighbourhoods Gc D U > 1 and A D V > V' such that for
V" eV, U-V"is a smooth Banach submanifold of V with finite
codimension (equal to coker(V’)%!, which we can identify we a Dolbeaut
cohomology group H%!(End(£))).

10th November 2011 10 / 12



Lemma

Every L3-complexified gauge orbit in the space of L3-connections contains
a smooth connection.

Proof.

Let N be a finite-dimensional subspace of A transversal to the
L3-complexified gauge orbit through the fixed L2-connection V’. On some
small neighbourhood V of V' there is a projection w: V — N with

7= (V') = U(V') for some open neighbourhood U > 1 in G¢. Given r+ 1
points By, ..., B,+1 in V (r = dim(N)) we define an affine linear map fg
from the r-simplex o, into V taking the vertices to the B;. Then

mofg: o, — N is a continuous map depending continuously on B. L]

v
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Proof, continued:

If we pick B so that V' is at their barycentre then the restriction of 7 o fg
to the boundary represents the generator of H,(N \ A;Z) and hence 7 o fg
must hit V' at some point in the interior of the simplex. This remains true
(by continuity) when we replace B by a nearby collection of points C. We
can assume that the C; are smooth since smooth connections are dense in
L2-connections. Since linear combinations of smooth connections are again
smooth, there is a point p € o, such that fc(p) is a smooth connection
living in m=1(V’), which is a subset of the L3-complexified gauge orbit of
V. Ol

Here again we have a gorgeous proof ripped straight out of Atiyah and
Bott. You should go and read it.

Jonathan Evans Lecture 14: Narasimhan-Seshadri theorem || 10th November 2011 12 /12



