Lecture 13: Narasimhan-Seshadri theorem I

Jonathan Evans

8th November 2011

Today we begin the proof of...

Theorem (Narasimhan-Seshadri, Donaldson)

An indecomposable Hermitian holomorphic vector bundle \mathcal{E} on a Riemann surface (M, g) is stable if and only if there is a compatible unitary connection on \mathcal{E} with constant central curvature

$$
\star F_{\nabla}=-2 \pi i \mu(\mathcal{E}) .
$$

...or equivalently...

Theorem

Every stable $\mathcal{G}_{\mathbb{C}}$-orbit on \mathcal{A} contains a unique \mathcal{G}-orbit of solutions to $\mathcal{Y M}^{-1}(0)$ where

$$
\mathcal{Y} \mathcal{M}(\nabla)=\int_{M}\left\|F_{\nabla}\right\|^{2} d \mathrm{vol}-\mu(\mathcal{E})
$$

The proof goes something like the following. Let ∇_{i} be a sequence of connections in the $\mathcal{G}_{\mathbb{C}}$-orbit of ∇ (corresponding to \mathcal{E}) such that $\mathcal{Y} \mathcal{M}\left(\nabla_{i}\right) \rightarrow \inf _{\mathcal{G}_{\mathbb{C}}(\nabla)} \mathcal{Y} \mathcal{M}$. A theorem of Uhlenbeck (which we will prove in a couple of lectures' time) guarantees the existence of a limiting connection ∇_{∞}. If $\nabla_{\infty} \in \mathcal{G}_{\mathbb{C}}(\nabla)$ then a quick variational calculation will ensure that ∇_{∞} has constant central curvature. If not, we will use ∇_{∞} to construct a subbundle contradicting stability of \mathcal{E}. This last step requires an inductive argument, but we notice that in the case $\operatorname{rank}(\mathcal{E})=1$ (i.e. $U(1)$-bundles) the stability condition is empty (all line bundles are stable) and the theorem reduces to the Hodge-Maxwell theorem (which we've already proved). Therefore we will assume the theorem is true for all bundles of rank $\leq k$ and try to prove it for rank $k+1$.

The first technical caveat is that we do not use the Yang-Mills functional, but rather a modification with the same minima (to simplify the proof). Define the norm

$$
\nu(M)=\operatorname{Tr}\left(M^{\dagger} M\right)=\sum_{i=1}^{n}\left|\lambda_{i}\right|=\max _{\left\{e_{i}\right\}} \sum_{i=1}^{n}\left|\left\langle M e_{i}, e_{i}\right\rangle\right|
$$

on Hermitian n-by- n matrices. Here \dagger is the adjoint, λ_{i} are the eigenvalues and the maximum is taken over all orthonormal bases $\left\{e_{i}\right\}$ of \mathbb{C}^{n}. For a section $s \in \Omega^{0}(M ; \operatorname{ad}(P))$ define the norm

$$
N(s)=\sqrt{\int_{M} \nu(s)^{2} \mathrm{vol}}
$$

Now we use the modified functional

$$
\mathcal{Y} \mathcal{M}(\nabla)=N\left(\frac{\star F_{\nabla}}{2 \pi i}+\mu\right)
$$

Observe that the zeros of this functional are precisely the constant central curvature Yang-Mills connections.

Lemma (Exercise!)

If $M=\left(\begin{array}{cc}A & -B^{\dagger} \\ B & C\end{array}\right)$ then $\nu(M) \geq|\operatorname{Tr}(A)|+|\operatorname{Tr}(C)|$.
We can now prove the converse direction of the theorem:

Proposition

If an indecomposable holomorphic vector bundle \mathcal{E} admits a compatible connection ∇ with $\mathcal{Y} \mathcal{M}(\nabla)=0$ then \mathcal{E} is stable.

Suppose that \mathcal{E} is not stable and let $\mathcal{M} \subset \mathcal{E}$ be a subbundle with $\mu(\mathcal{M}) \geq \mu(\mathcal{E})$ and quotient

$$
0 \rightarrow \mathcal{M} \rightarrow \mathcal{E} \rightarrow \mathcal{N} \rightarrow 0
$$

We will show that:

Lemma

If $0 \rightarrow \mathcal{M} \rightarrow \mathcal{E} \rightarrow \mathcal{N} \rightarrow 0$ is an exact sequence of holomorphic bundles with $\mu(\mathcal{M}) \geq \mu(\mathcal{E})$ then for any compatible connection ∇ on \mathcal{E},

$$
\mathcal{Y} \mathcal{M}(\nabla) \geq \operatorname{rank}(\mathcal{M})(\mu(\mathcal{M})-\mu(\mathcal{E}))+\operatorname{rank}(\mathcal{N})(\mu(\mathcal{E})-\mu(\mathcal{N}))
$$

with equality if and only if the extension splits.
The Proposition obviously follows from this: the existence of a subbundle like \mathcal{M} implies this inequality and it must be strict since the sequence cannot split (since \mathcal{E} is indecomposable). Hence $\mathcal{Y} \mathcal{M}(\nabla)$ cannot be zero since the RHS is ≥ 0. Morally, since "curvature decreases in subbundles", having a subbundle contradicting stability (i.e. with large slope) means that the curvature must be large!

To prove the Lemma, recall that on such an exact sequence of holomorphic bundles a unitary connection splits as

$$
\left(\begin{array}{cc}
\nabla_{\mathcal{M}} & -\beta^{\dagger} \\
\beta & \nabla_{\mathcal{N}}
\end{array}\right)
$$

Here $\nabla_{\mathcal{M}} \sigma=\operatorname{pr}_{\mathcal{M}} \nabla \sigma$ where $\operatorname{pr}_{\mathcal{M}}$ denotes orthogonal projection with respect to the Hermitian metric and $\beta=\nabla-\nabla_{\mathcal{M}}: \Omega^{0}(M ; \mathcal{M}) \rightarrow \Omega^{1}(M ; \mathcal{N})$ is a 1-form with values in $\mathcal{M}^{*} \otimes \mathcal{N}$ (called the 2nd fundamental form of \mathcal{M}). The curvature is

$$
F_{\nabla}=\left(\begin{array}{cc}
F_{\nabla_{\mathcal{M}}}-\frac{1}{2} \beta^{\dagger} \wedge \beta & -\nabla_{\operatorname{Hom}\left(\mathcal{M}^{*} \otimes \mathcal{N}\right)} \beta^{\dagger} \\
\nabla_{\operatorname{Hom}\left(\mathcal{M}^{*} \otimes \mathcal{N}\right)} \beta & F_{\nabla_{\mathcal{N}}}-\frac{1}{2} \beta \wedge \beta^{\dagger}
\end{array}\right)
$$

Using our inequality for the norm ν in terms of block matrices we see that
$\nu\left(\frac{\star F_{\nabla}}{2 \pi i}+\mu\right) \geq\left|\operatorname{Tr}\left(\frac{F_{\nabla_{\mathcal{M}}}-\frac{1}{2} \beta^{\dagger} \wedge \beta}{2 \pi i}+\mu\right)\right|+\left\lvert\, \operatorname{Tr}\left(\frac{F_{\nabla_{\mathcal{N}}}-\frac{1}{2} \beta^{\dagger} \wedge \beta}{2 \pi i}+\mu\right)\right.$
Remember also that $\left\langle\beta^{\dagger} \wedge \beta\right\rangle=-2 \pi i|\beta|^{2}$. Therefore

$$
\begin{aligned}
\mathcal{Y} \mathcal{M}(\nabla) & =\sqrt{\int_{M} \nu\left(\frac{\star F_{\nabla}}{2 \pi i}+\mu\right)^{2}} \\
& \geq \int_{M} \nu\left(\frac{\star F_{\nabla}}{2 \pi i}+\mu\right) \\
& \geq\left|\int_{M} \operatorname{Tr}\left(\frac{\star F_{\nabla_{\mathcal{M}}}}{2 \pi i}+\mu\right)-|\beta|^{2}\right|+\left|\int_{M} \operatorname{Tr}\left(\frac{\star F_{\nabla_{\mathcal{N}}}}{2 \pi i}+\mu\right)-|\beta|^{2}\right|
\end{aligned}
$$

...and $\int_{M} \operatorname{Tr}\left(\frac{\star F_{\nabla}}{2 \pi i}\right)=-\operatorname{deg}(\mathcal{M})$ so these terms give

$$
\operatorname{deg}(\mathcal{M})-\operatorname{rank}(\mathcal{M}) \mu(\mathcal{E})+|\beta|^{2}+\operatorname{deg}(\mathcal{N})-\operatorname{rank}(\mathcal{N}) \mu(\mathcal{E})+|\beta|^{2}
$$

(why have I switched signs?) This in turn is bigger than

$$
\operatorname{rank}(\mathcal{M})(\mu(\mathcal{M})-\mu(\mathcal{E}))+\operatorname{rank}(\mathcal{N})(\mu(\mathcal{E})-\mu(\mathcal{N}))
$$

as claimed. Phew! The Lemma is proved.

The second technical caveat is that we need slightly more Sobolev theory than I gave you before because we're now in a nonlinear setting. Let me describe the setup today and next time we'll continue with the proof.

- We're using the L_{1}^{2}-completion of \mathcal{A} (i.e. fix ∇ and identify \mathcal{A} with $\Omega^{1}(M ; \operatorname{ad}(P))$ then take the Sobolev completion of the vector space).
- We're using L_{2}^{2}-gauge transformations. These form a group because the product of two L_{2}^{2} functions is again L_{2}^{2}. More generally this is true of L_{k}^{2} functions whenever $k>n / 2$ (for us $n=2$). The product of an L_{2}^{2} function and an L_{1}^{2} function is L_{1}^{2} and hence the L_{2}^{2}-gauge group actually acts on the space of L_{1}^{2}-connections!
- Perhaps more importantly, $L_{2}^{2} \subset \mathcal{C}^{0}$ and hence the gauge transformations make sense with respect to the topology of the bundle.

More important facts:

- ν is equivalent to the L^{2}-norm on $\Omega^{0}(M ; \operatorname{ad}(P))$ and in particular extends to L^{2}-sections. $\mathcal{Y} \mathcal{M}$ extends to L_{1}^{2}-sections. To see this last fact, note that when curvature transforms under change of connection $\nabla+A$, we get $\nabla A+[A, A]$ and if $A \in L_{1}^{2}$ then both of these are in L^{2} (it's clear for the derivative; the other follows from the embedding $L_{1}^{2} \subset L^{4}$ and the fact that the product of two L^{4}-functions is L^{2} by the Hölder inequality).
- $L_{1}^{2} \subset L^{4}$ follows from the more general form of the Sobolev/Rellich theorems

$$
L_{k}^{p} \subset L_{\ell}^{q}
$$

which holds when $k \geq \ell$ and $k-n / p \geq \ell-n / q$ (and is a compact inclusion when the inequalities are strict).

- Also $L_{k}^{p} \subset \mathcal{C}^{\ell}$ if $k-n / p>\ell$ (also compact). These theorems all come with accompanying inequalities on norms, e.g. $\|\cdot\|_{\mathcal{C}^{\ell}} \leq C\|\cdot\|_{L_{k}^{p}}$.

Finally we note an improved version of elliptic regularity:

Theorem

If P is an elliptic operator of order d and $P u=v$ weakly with $v \in L_{k}^{2}$ and $u \in \operatorname{ker}(P)^{\perp}$ then $u \in L_{k+d}^{2}$ and

$$
\|u\|_{L_{k+d}^{2}} \leq C\|v\|_{L_{k}^{2}}
$$

(The improved inequality doesn't have a term in $\|u\|_{L^{2}}$. Note that this cannot hold unless $\left.u \in \operatorname{ker}(P)^{\perp}\right)$.

