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Today we begin the proof of...

Theorem (Narasimhan-Seshadri, Donaldson)

An indecomposable Hermitian holomorphic vector bundle E on a Riemann
surface (M, g) is stable if and only if there is a compatible unitary
connection on E with constant central curvature

?F∇ = −2πiµ(E).

...or equivalently...

Theorem

Every stable GC-orbit on A contains a unique G-orbit of solutions to
YM−1(0) where

YM(∇) =

∫
M
||F∇||2dvol− µ(E)

.
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The proof goes something like the following. Let ∇i be a sequence of
connections in the GC-orbit of ∇ (corresponding to E) such that
YM(∇i )→ infGC(∇) YM. A theorem of Uhlenbeck (which we will prove
in a couple of lectures’ time) guarantees the existence of a limiting
connection ∇∞. If ∇∞ ∈ GC(∇) then a quick variational calculation will
ensure that ∇∞ has constant central curvature. If not, we will use ∇∞ to
construct a subbundle contradicting stability of E . This last step requires
an inductive argument, but we notice that in the case rank(E) = 1 (i.e.
U(1)-bundles) the stability condition is empty (all line bundles are stable)
and the theorem reduces to the Hodge-Maxwell theorem (which we’ve
already proved). Therefore we will assume the theorem is true for all
bundles of rank ≤ k and try to prove it for rank k + 1.
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The first technical caveat is that we do not use the Yang-Mills functional,
but rather a modification with the same minima (to simplify the proof).
Define the norm

ν(M) = Tr(M†M) =
n∑

i=1

|λi | = max
{ei}

n∑
i=1

|〈Mei , ei 〉|

on Hermitian n-by-n matrices. Here † is the adjoint, λi are the eigenvalues
and the maximum is taken over all orthonormal bases {ei} of Cn. For a
section s ∈ Ω0(M; ad(P)) define the norm

N(s) =

√∫
M
ν(s)2vol

Now we use the modified functional

YM(∇) = N

(
?F∇
2πi

+ µ

)
Observe that the zeros of this functional are precisely the constant central
curvature Yang-Mills connections.
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Lemma (Exercise!)

If M =

(
A −B†
B C

)
then ν(M) ≥ |Tr(A)|+ |Tr(C )|.

We can now prove the converse direction of the theorem:

Proposition

If an indecomposable holomorphic vector bundle E admits a compatible
connection ∇ with YM(∇) = 0 then E is stable.

Suppose that E is not stable and let M⊂ E be a subbundle with
µ(M) ≥ µ(E) and quotient

0→M→ E → N → 0
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We will show that:

Lemma

If 0→M→ E → N → 0 is an exact sequence of holomorphic bundles
with µ(M) ≥ µ(E) then for any compatible connection ∇ on E ,

YM(∇) ≥ rank(M)(µ(M)− µ(E)) + rank(N )(µ(E)− µ(N ))

with equality if and only if the extension splits.

The Proposition obviously follows from this: the existence of a subbundle
like M implies this inequality and it must be strict since the sequence
cannot split (since E is indecomposable). Hence YM(∇) cannot be zero
since the RHS is ≥ 0. Morally, since “curvature decreases in subbundles”,
having a subbundle contradicting stability (i.e. with large slope) means
that the curvature must be large!
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To prove the Lemma, recall that on such an exact sequence of
holomorphic bundles a unitary connection splits as(

∇M −β†
β ∇N

)
Here ∇Mσ = prM∇σ where prM denotes orthogonal projection with
respect to the Hermitian metric and
β = ∇−∇M : Ω0(M;M)→ Ω1(M;N ) is a 1-form with values in
M∗ ⊗N (called the 2nd fundamental form of M). The curvature is

F∇ =

(
F∇M − 1

2β
† ∧ β −∇Hom(M∗⊗N )β

†

∇Hom(M∗⊗N )β F∇N − 1
2β ∧ β

†

)
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Using our inequality for the norm ν in terms of block matrices we see that

ν

(
?F∇
2πi

+ µ

)
≥

∣∣∣∣∣Tr
(
F∇M − 1

2β
† ∧ β

2πi
+ µ

)∣∣∣∣∣+
∣∣∣∣∣Tr
(
F∇N − 1

2β
† ∧ β

2πi
+ µ

)∣∣∣∣∣
Remember also that 〈β† ∧ β〉 = −2πi |β|2. Therefore

YM(∇) =

√∫
M
ν

(
?F∇
2πi

+ µ

)2

≥
∫
M
ν

(
?F∇
2πi

+ µ

)
≥
∣∣∣∣∫

M
Tr

(
?F∇M

2πi
+ µ

)
− |β|2

∣∣∣∣+

∣∣∣∣∫
M
Tr

(
?F∇N

2πi
+ µ

)
− |β|2

∣∣∣∣
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...and
∫
M Tr

(
?F∇
2πi

)
= − deg(M) so these terms give

deg(M)− rank(M)µ(E) + |β|2 + deg(N )− rank(N )µ(E) + |β|2

(why have I switched signs?) This in turn is bigger than

rank(M)(µ(M)− µ(E)) + rank(N )(µ(E)− µ(N ))

as claimed. Phew! The Lemma is proved.
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The second technical caveat is that we need slightly more Sobolev theory
than I gave you before because we’re now in a nonlinear setting. Let me
describe the setup today and next time we’ll continue with the proof.

We’re using the L21-completion of A (i.e. fix ∇ and identify A with
Ω1(M; ad(P)) then take the Sobolev completion of the vector space).

We’re using L22-gauge transformations. These form a group because
the product of two L22 functions is again L22. More generally this is
true of L2k functions whenever k > n/2 (for us n = 2). The product of
an L22 function and an L21 function is L21 and hence the L22-gauge
group actually acts on the space of L21-connections!

Perhaps more importantly, L22 ⊂ C0 and hence the gauge
transformations make sense with respect to the topology of the
bundle.
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More important facts:

ν is equivalent to the L2-norm on Ω0(M; ad(P)) and in particular
extends to L2-sections. YM extends to L21-sections. To see this last
fact, note that when curvature transforms under change of connection
∇+ A, we get ∇A + [A,A] and if A ∈ L21 then both of these are in L2

(it’s clear for the derivative; the other follows from the embedding
L21 ⊂ L4 and the fact that the product of two L4-functions is L2 by
the Hölder inequality).

L21 ⊂ L4 follows from the more general form of the Sobolev/Rellich
theorems

Lpk ⊂ Lq`

which holds when k ≥ ` and k − n/p ≥ `− n/q (and is a compact
inclusion when the inequalities are strict).

Also Lpk ⊂ C
` if k − n/p > ` (also compact). These theorems all come

with accompanying inequalities on norms, e.g. || · ||C` ≤ C || · ||Lpk .
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Finally we note an improved version of elliptic regularity:

Theorem

If P is an elliptic operator of order d and Pu = v weakly with v ∈ L2k and
u ∈ ker(P)⊥ then u ∈ L2k+d and

||u||L2k+d
≤ C ||v ||L2k

(The improved inequality doesn’t have a term in ||u||L2 . Note that this
cannot hold unless u ∈ ker(P)⊥).
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