Lecture 10: Holomorphic bundles I (Existence)

Jonathan Evans

20th October 2011

Last time we introduced holomorphic vector bundles \mathcal{E} over complex manifolds and we showed there is an operator

$$
\bar{\partial}_{\mathcal{E}}: \Omega^{k}(M ; \mathcal{E}) \rightarrow \Omega^{k+1}(M ; \mathcal{E})
$$

which vanishes on holomorphic sections $(k=0)$ and obeys the Leibniz rule

$$
\bar{\partial}_{\mathcal{E}}(f \sigma)=(\bar{\partial} f) \sigma+f \bar{\partial}_{\mathcal{E}} \sigma
$$

We observed that if we pick a Hermitian metric on \mathcal{E} then we can recover $\bar{\partial}_{\mathcal{E}}$ as the (0,1)-part of a unitary connection ∇. The aim of today's lecture is to see that when M is a Riemann surface, any unitary connection on a Hermitian complex vector bundle E induces a holomorphic structure \mathcal{E} with

$$
\bar{\partial}_{\mathcal{E}}=\nabla^{0,1}
$$

Proposition

If P is a principal $U(n)$-bundle over a Riemann surface M with associated bundle E and ∇ is a $U(n)$-connection then E inherits the structure of a holomorphic vector bundle over M such that

$$
\nabla^{0,1}=\bar{\partial}
$$

Proof.

It's easy to define complex charts on E : just pick local trivialisations, use the fibre coordinate vertically and pull back complex coordinates from M horizontally. The fact that M is a complex manifold means that these will glue to give the structure of a complex manifold globally and the projection will be holomorphic by construction. The main difficulty is to pick the trivialisation so as to ensure $\nabla^{0,1}=\bar{\partial}_{\mathcal{E}}$. A trivialisation is the same as a choice of local sections $\sigma_{1}, \ldots, \sigma_{n}$ which form a unitary basis at each point. Notice that in the complex structure we have described these sections will trace out complex submanifolds and hence end up as holomorphic local sections...

Proof.

...but holomorphic sections will obey $\bar{\partial}_{\mathcal{E}} \sigma=0$, so to ensure $\nabla^{0,1}=\bar{\partial}_{\mathcal{E}}$ we'll have to find a basis of local sections $\sigma=\left\{\sigma_{i}\right\}_{i=1}^{n}$ for which $\nabla^{0,1} \sigma_{i}=0$. To get us started, let's just pick a basis of local sections σ and record their $\nabla^{0,1}$-covariant derivatives as an n-by- n matrix θ of $(0,1)$-forms (in terms of the basis $\sigma!$).

$$
\nabla_{X}^{0,1} \sigma=\theta(X) \sigma
$$

Replace σ by $f \sigma$ for some matrix-valued function f and (by the Leibniz rule for $\nabla^{0,1}$) we get

$$
\nabla^{0,1}(f \sigma)=(\bar{\partial} f+f \theta) \sigma
$$

and it is sufficient to solve $f^{-1} \bar{\partial} f+\theta=0$. Consider the operator

$$
P: L_{2}^{2} \rightarrow L_{1}^{2}
$$

given by $P(f)=f^{-1} \bar{\partial} f$. Since Sobolev theory works best on compact manifolds we assume for now that L_{2}^{2}, etc are spaces of functions on S^{2}.
We will see how to remedy this assumption shortly.

Proof.

The operator P is not linear but its differential at $f=1$ is the linear elliptic operator $\bar{\partial}$:

$$
P(1+\epsilon)=\left(1-\epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right) \bar{\partial}(1+\epsilon)=\bar{\partial} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

I won't be specific about what I mean by elliptic, but I will tell you what I use when I need it. Now we see that $\bar{\partial}: L_{2}^{2} \rightarrow L_{1}^{2}$ is surjective. Let ρ_{1}, ρ_{2} be a partition of unity for the cover of S^{2} by upper and lower hemispheres and let $f_{i}=f \rho_{i}$. Then by Cauchy's integral formula

$$
f_{i}(\xi)=\frac{1}{2 \pi i} \int \bar{\partial} f_{i} \frac{d z \wedge d \bar{z}}{z-\xi}
$$

so we can recover a function from its $\bar{\partial}$-derivative. By Liouville's theorem, the kernel of $\bar{\partial}$ is just the space of constant matrices (each entry has to be an entire function).

Proof.

All this means that the linearisation of P at $1 \in L_{2}^{2}$ is surjective. Therefore by the implicit function theorem for Banach spaces we see that $P(f)=-\theta$ has a unique solution orthogonal to $\operatorname{ker}(\bar{\partial})$ provided θ has small L_{1}^{2}-norm. Unique means unique in a neighbourhood of $1 \in L_{2}^{2}$. Ellipticity will imply that if $\theta \in \mathcal{C}^{\infty}$ then $f \in \mathcal{C}^{\infty}$. Now we never wanted to work over a sphere. We wanted to work over a disc. To that end, let $\rho(|z|)$ be a cutoff function on S^{2} such that

$$
\rho(x)= \begin{cases}1 & \text { if } x \leq \delta / 2 \\ 1-\frac{2 x-\delta}{\delta} & \text { if } x \in[\delta / 2, \delta] \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\rho \in L_{1}^{2}$ and

$$
\|\rho\|_{1} \leq 2 \sqrt{\pi}
$$

Proof.

Now if $\phi=\rho \theta$ then

$$
\begin{aligned}
\|\phi\|_{1}^{2} & =\|\rho \theta\|^{2}+\left\|\rho^{\prime} \theta+\rho \theta^{\prime}\right\|^{2} \\
& \leq\|\rho \theta\|^{2}+\left\|\rho^{\prime} \theta\right\|^{2}+\left\|\rho \theta^{\prime}\right\|^{2}+2\left\|\rho^{\prime} \theta\right\|\left\|\rho \theta^{\prime}\right\| \\
& \leq\|\rho \theta\|^{2}+\left\|\rho^{\prime} \theta\right\|^{2}+\left\|\rho \theta^{\prime}\right\|^{2}+2\left\|\rho^{\prime} \theta\right\|^{2}+2\left\|\rho \theta^{\prime}\right\|^{2} \\
& \leq 3\|\rho \theta\|^{2}+3\left\|\rho^{\prime} \theta\right\|^{2}+3\left\|\rho \theta^{\prime}\right\|^{2}+3\|\rho \theta\|^{2} \\
& \leq 12 \sup |\theta|^{2}+3\|\theta\|_{1}^{2}
\end{aligned}
$$

By suitably choosing σ to begin with we can assume that $\theta(0)=0$. Then $\sup |\theta|^{2}$ can be made arbitrarily small by reducing δ. So can $\|\theta\|_{1}^{2}$.
Therefore $P(f)=-\rho \theta$ has a solution for small δ and we can restrict to the disc of interest to find our local holomorphic frame.

This gorgeous argument is due to Atiyah and Bott in their Yang-Mills equations over Riemann surfaces paper. It's a "linear" version of the Newlander-Nirenberg theorem (which is much harder and constructs systems of local complex coordinates under much weaker assumptions).

Corollary

We can think of unitary connections on a $U(n)$-bundle as giving the structure of a holomorphic vector bundle to the associated complex vector bundle.

The action of the gauge group on \mathcal{A} now extends to an action of the complexified gauge group $\mathcal{G}_{\mathbb{C}}$ consisting of gauge transformations of the $G L(n, \mathbb{C})$-bundle associated to the representation $U(n) \rightarrow G L(n, \mathbb{C})$. Notice that our identification of a connection $\nabla \in \mathcal{A}$ with a holomorphic structure depended on a choice of Hermitian metric. The space of Hermitian metrics compatible with a given $G L(n, \mathbb{C})$ bundle admits a transitive $G L(n, \mathbb{C})$-action and $U(n)$ is the stabiliser of a given metric. Therefore we can act on \mathcal{A} by $G L(n, \mathbb{C})$-gauge transformations and we get unitary connections which are compatible with the same holomorphic vector bundle (using a different choice of Hermitian metric).

In formulae

Let's remind ourselves that a gauge transformation $u \in \mathcal{G}$ is a G-equivariant diffeomorphism of P living over id and that

$$
(u \nabla)_{X} \sigma=u \nabla_{X}\left(u^{-1} \sigma\right)
$$

What is $u \nabla-\nabla$? Well we can now differentiate u, considered as a section of $\operatorname{Ad}(P)=P \times_{\text {Ad }} G($ not $\operatorname{ad}(P)!)$. We get

$$
(u \nabla)_{X} \sigma=\nabla_{X} \sigma+\left(u \nabla_{X} u^{-1}\right) \sigma
$$

so $a=u \nabla-\nabla=u \nabla u^{-1}$, which is a section of $\operatorname{ad}(P)$. Since $u u^{-1}=\mathrm{id}$, $u \nabla u^{-1}=-(\nabla u) u^{-1}$. In these terms, the complexified gauge action is

$$
(g \nabla)^{0,1}=\nabla^{0,1}-\left(\nabla^{0,1} g\right) g^{-1}
$$

We see that $\mathcal{A} / \mathcal{G}_{\mathbb{C}}$ is the "moduli space" of holomorphic vector bundles. By analogy with the Kempf-Ness theorem we expect there to be a notion of stability of holomorphic vector bundles such that the stable $\mathcal{G}_{\mathbb{C}}$-orbits contain a unique minimum of the Yang-Mills functional. This is the Narasimhan-Seshadri theorem. Next time we will define the relevant notion of stability, before moving on to the proof (à la Donaldson).

