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Last time we introduced holomorphic vector bundles £ over complex
manifolds and we showed there is an operator

de: QK(M; €) — QM €)
which vanishes on holomorphic sections (k = 0) and obeys the Leibniz rule
gg(fO') = (51[)0' + fggo

We observed that if we pick a Hermitian metric on £ then we can recover
g as the (0, 1)-part of a unitary connection V. The aim of today's lecture
is to see that when M is a Riemann surface, any unitary connection on a

Hermitian complex vector bundle E induces a holomorphic structure £ with

55 = Vo’l.
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Proposition

If P is a principal U(n)-bundle over a Riemann surface M with associated
bundle E and V is a U(n)-connection then E inherits the structure of a
holomorphic vector bundle over M such that

vol=9

Proof.

It's easy to define complex charts on E: just pick local trivialisations, use
the fibre coordinate vertically and pull back complex coordinates from M
horizontally. The fact that M is a complex manifold means that these will
glue to give the structure of a complex manifold globally and the
projection will be holomorphic by construction. The main difficulty is to
pick the trivialisation so as to ensure V%! = J¢. A trivialisation is the
same as a choice of local sections o1, ...,0, which form a unitary basis at
each point. Notice that in the complex structure we have described these
sections will trace out complex submanifolds and hence end up as
holomorphic local sections... O
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Proof.

...but holomorphic sections will obey e = 0, so to ensure Vo1 = §¢
we'll have to find a basis of local sections o = {o;}_; for which
V%l = 0. To get us started, let's just pick a basis of local sections o
and record their V%!-covariant derivatives as an n-by-n matrix 6 of
(0,1)-forms (in terms of the basis o!).

Vg&la =0(X)o

Replace o by fo for some matrix-valued function f and (by the Leibniz

rule for Vo) we get .
VO(fo) = (Of + fO)o

and it is sufficient to solve f~10f + 6 = 0. Consider the operator
P: 15— L3

given by P(f) = f~10f. Since Sobolev theory works best on compact
manifolds we assume for now that L2, etc are spaces of functions on S2.

We will see how to remedy this assumption shortly. O
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Proof.

The operator P is not linear but its differential at f = 1 is the linear
elliptic operator 0:

P(L+e) = (1— e+ O(2)I(1 + €) = e + O(e?)

| won't be specific about what | mean by elliptic, but | will tell you what |
use when | need it. Now we see that 9: L3 — L2 is surjective. Let p1,p2
be a partition of unity for the cover of S? by upper and lower hemispheres
and let f; = fp;. Then by Cauchy's integral formula

1 =, dzN\dz
6) = 57 [ 96

so we can recover a function from its d-derivative. By Liouville’s theorem,
the kernel of 0 is just the space of constant matrices (each entry has to be
an entire function). O
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Proof.

All this means that the linearisation of P at 1 € L3 is surjective. Therefore
by the implicit function theorem for Banach spaces we see that P(f) = —0
has a unique solution orthogonal to ker(d) provided @ has small L2-norm.
Unique means unique in a neighbourhood of 1 € L3. Ellipticity will imply
that if § € C* then f € C*°. Now we never wanted to work over a sphere.
We wanted to work over a disc. To that end, let p(|z|) be a cutoff
function on S? such that

1 if x <§/2
p(x) =< 1— 22 if x € [§/2,]
0 otherwise
Note that p € L? and
llpll <2V

Ol
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Proof.
Now if ¢ = pf then

1611 = llp81> + 1106 + p¢'||?
< {1011 + 1lp0112 + 11p8']12 + 211061108l
< {1011 + 1lo'0112 + 11p8'|? + 2110611 + 2| p8||*
< 3108112 + 3]15'611* + 311p6"||* + 3| o8] |2
< 12sup |62 + 3(16] %
By suitably choosing o to begin with we can assume that 6(0) = 0. Then
sup || can be made arbitrarily small by reducing §. So can ||6]|3.

Therefore P(f) = —pf has a solution for small § and we can restrict to the
disc of interest to find our local holomorphic frame. O

v
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This gorgeous argument is due to Atiyah and Bott in their Yang-Mills
equations over Riemann surfaces paper. It's a “linear” version of the
Newlander-Nirenberg theorem (which is much harder and constructs
systems of local complex coordinates under much weaker assumptions).

Corollary

We can think of unitary connections on a U(n)-bundle as giving the
structure of a holomorphic vector bundle to the associated complex vector
bundle.
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The action of the gauge group on A now extends to an action of the
complexified gauge group G¢ consisting of gauge transformations of the
GL(n, C)-bundle associated to the representation U(n) — GL(n,C).
Notice that our identification of a connection V € A with a holomorphic
structure depended on a choice of Hermitian metric. The space of
Hermitian metrics compatible with a given GL(n,C) bundle admits a
transitive GL(n, C)-action and U(n) is the stabiliser of a given metric.
Therefore we can act on A by GL(n,C)-gauge transformations and we get
unitary connections which are compatible with the same holomorphic
vector bundle (using a different choice of Hermitian metric).
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In formulae

Let's remind ourselves that a gauge transformation u € G is a
G-equivariant diffeomorphism of P living over id and that

(uV)xo = uVx(uto)

What is uV — V? Well we can now differentiate u, considered as a section
of Ad(P) = P xaq G (not ad(P)!). We get

(uV)xo = Vxo + (uVxu o

so a=uV — V = uVu~!, which is a section of ad(P). Since uu~! = 1d,
uVu~t = —(Vu)u=L. In these terms, the complexified gauge action is

(gv)o,l — vo,l o (vo,lg)gfl
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We see that A/Gc is the “moduli space” of holomorphic vector bundles.
By analogy with the Kempf-Ness theorem we expect there to be a notion
of stability of holomorphic vector bundles such that the stable G¢-orbits
contain a unique minimum of the Yang-Mills functional. This is the
Narasimhan-Seshadri theorem. Next time we will define the relevant
notion of stability, before moving on to the proof (a la Donaldson).
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