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Essentially everything I will say is contained in Atiyah-Bott “The
Yang-Mills equations on a Riemann surface”. This mixes

∞-dimensional Morse theory,

equivariant cohomology,

holomorphic vector bundles,

ideas from physics

so we will have to be a little sketchy! STOP me if you stop understanding.

Exercises and notes: http://www.jde27.co.uk, see handout for further
reading.

Exercise classes: Tuesday 14:00-15:00 (here) starting optimistically
next week

Thursday lectures in HG E 3.
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What we will cover

First few lectures: Maxwell’s equations of magnetostatics

∇ · B = 0 (1)

∇× B = µ0J (2)

Linear PDE:
I the first equation satisfied by all static magnetic fields (intrinsic),
I the second equation involves current density J.

We’ll rewrite them in a new form to clarify their symmetries and to
allow generalisation to an arbitrary background (not just R3).

On the way we’ll discover gauge theory.

Punchline

Space of solutions depends only on the topology of the background.
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Major theme in modern geometry

Nice (elliptic) PDE gives a space of solutions whose topology reflects that
of the background space.

Example (Donaldson theory (Yang-Mills in 4-D))

Cohomological invariants of the moduli space of Yang-Mills instantons

detect exotic 4-manifolds,

prove the diagonalisability theorem,

and the failure of h-cobordism in 4-D.

In 2-D we hope to understand the full space of solutions. So what are the
Yang-Mills equations?
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Maxwell’s equations come from thinking about the group U(1) of unit
complex numbers.

In physics one thinks of this as the possible phases of a quantum
wavefunction ψ.

Measurable quantities like ψ̄ψ do not depend on phase so one hopes
that the equations of QM are invariant under local changes of phase
ψ(x) 7→ e iφ(x)ψ(x).

TRUE if you introduce a new field and absorb phase shifts into a
potential for this field. This yields Maxwell theory.

This is called the gauge principle. We will cover it properly next lecture. It
generalises to other groups e.g. SU(2),SO(3) and the corresponding
theory is called Yang-Mills theory.
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Goal of course

The Atiyah-Bott formulae for the cohomology of the moduli space of
Yang-Mills instantons.

What is a moduli space? And how did Atiyah and Bott work out its
cohomology? Take a step back to Maxwell’s equations.

∇ · B = 0 implies (Poincaré’s lemma) there exists a potential A such
that B = ∇× A.

However it is not uniquely determined:

A +∇f

gives the same electromagnetic field! In fact any two potentials for
the same field are related in this way, called a gauge transformation.
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Why bother?

Underlying reason

There is a function F : A → R on the (∞-dimensional) space A of
potentials which is invariant under gauge transformations and whose
critical points DF(φ,A) = 0 are precisely the solutions to Maxwell’s
equations.

In Yang-Mills theory we have exactly the same picture. We are interested
in the MODULI SPACE of Yang-Mills fields:

M := {DF = 0}/G

where G is the group of gauge transformations. This means we’re not
interested in potentials, just fields (which are equivalence classes of
potentials up to gauge transformations). M is a finite-dimensional
manifold (maybe with some singularities).
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Example

In Maxwell theory on a Riemannian manifold X the moduli space is very
simple because the equations are linear.

M∼= H1(X ;R)/H1(X ;Z)

When U(1) is replaced by a nonabelian group the Yang-Mills equations
become nonlinear and the moduli spaces develop interesting topology.

Genius idea (Atiyah-Bott)

Calculate the cohomology groups of M using Morse theory.
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Genius idea (Continued)

Use F : A → R as a Morse function!

A is topologically very simple, just an ∞-dimensional affine space.
Working backwards one should be able to get information about its critical
locus! (Caveat: only interested in critical locus modulo G so use
G-equivariant cohomology). This MASTERPIECE will be our focus later
when we have developed the tools to understand it.
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Because Yang-Mills theory on a Riemann surface is closely related to
algebraic geometry via the Narasimhan-Seshadri theorem. This will be the
focus of the first half of the course.

Theorem (Narasimhan-Seshadri)

A stable holomorphic vector bundle on a Riemann surface (something
entirely algebro-geometric) admits a Yang-Mills connection (unique up to
gauge) and conversely if a holomorphic vector bundle admits such a
connection it is stable.

Example

If X is a complex projective manifold then the Maxwell moduli space
H1(X ;R)/H1(X ;Z) is identified with the Jacobian torus of holomorphic
line bundles (which are all stable).
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This has an intriguing geometric parallel:

Theorem (Calabi-Yau-Aubin)

A Kähler manifold with c1 ≤ 0 admits a unique Kähler-Einstein metric.

While it’s hard (impossible?) to write down an explicit Ricci-flat metric on
a quartic K3 surface, its existence follows from this theorem!
Understanding the precise nature of algebro-geometric stability to go on
the left-hand-side to ensure existence of a “best metric” on the right is a
current hot topic and all the ideas seem to be directly inspired by the
Narasimhan-Seshadri theorem and its proof by Donaldson which we will
cover in the course!
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The moduli spaces of stable bundles on Riemann surfaces were long of
interest to algebraic geometers, but their topology was somehow
mysterious. Harder-Narasimhan gave formulae for the Betti numbers but
the formulae were magic: they worked over a finite field and counted
points, passing back to the topology of the locus of complex points using
the Weil conjectures. Atiyah and Bott recovered these formulae using their
totally different approach and the relationship between the two is
frustratingly unclear!
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