
Lecture IX: Picard-Lefschetz I

Jonathan Evans

18th November 2010

Jonathan Evans () Lecture IX: Picard-Lefschetz I 18th November 2010 1 / 22



We have now spent a couple of lectures on projective varieties and we’ve
picked up on one construction (blow-up) which is inspired by algebraic
geometry but which works in the symplectic setting also. Today we’ll look
at some more algebro-geometric ideas which generalise to the symplectic
setting, but sadly the generalisation is too hard for us to cover (it involves
Donaldson’s approximately holomorphic geometry). Nonetheless the ideas
are central to a modern understanding of symplectic geometry and there
will be pay-offs. In particular we’ll end up seeing a lot more Lagrangian
submanifolds and symplectomorphisms of projective varieties.
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Outline

We’ve seen that the quadric and cubic hypersurfaces in CP3 are
simply-connected. Today we’ll prove that all hypersurfaces in CP3 are
simply-connected as a by-product of Lefschetz’s hyperplane theorem.
This expresses part of the topology of a variety in terms of the
topology of its hyperplane sections.

We’ll also examine the argument used to prove Lefschetz’s theorem
from a more general point of view due to Eliashberg, mentioning
contact structures and plurisubharmonicity.

We will then use families of hyperplane sections to get a good look at
a whole variety. There will be lots of examples (sorry!) and we’ll see
how to turn a pencil into a Lefschetz “fibration”.

I will only be skimming the surface (as ever) so I highly recommend the
forthcoming book of Cieliebak-Eliashberg:
http://www.mathematik.uni-muenchen.de/ kai/classes/Stein05/stein.pdf
and the book of Clare Voisin (Hodge theory and complex algebraic
geometry II, Chapters 1, 2).
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Lefschetz’s hyperplane theorem

Theorem

Let Σm ⊂ CPn be a projective variety of complex dimension m, H ⊂ CPn

a hyperplane transverse to Σ and h = H ∩Σ the corresponding hyperplane
section of Σ. The inclusion h ⊂ Σ induces isomorphisms

πi (h)→ πi (Σ), i < m

and a surjection
πm(h)→ πm(Σ)

There is also a statement in terms of cohomology, but I prefer this
homotopy theoretic version.
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Corollary

If Σ is a hypersurface in CP3 then it is simply-connected (even more
trivially, if Σ is a curve in CP2 then it is connected).

Proof.

Let’s embed P3 in PVd where Vd is the space of degree d homogeneous
polynomials in n + 1 variables via

[x0 : x1 : x2 : x3] 7→ [F0(x) : · · · : FN(x)]

where Fi is a monomial basis for Vd (e.g. take {Fi} = {xd
0 , x

d
1 , . . .} - this

is called the Veronese embedding). A hyperplane is then a linear relation
between the Fi , i.e. a polynomial of degree d . The hyperplane section of
the Veronese variety is therefore precisely the corresponding hypersurface
of degree d . Lefschetz’s theorem tells us that π1(h) is isomorphic to
π1(P3) = 0.
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Exercise

Quartic K3 surfaces: Given the corollary and the formulae for the Chern
classes of surfaces in CP3 from last time (in particular the Euler
characteristic, c2), show that the quartic surface has H2

∼= Z22. Hint: If
you’re not used to the topology of 4-manifolds it might help to use
Poincaré duality and universal coefficients to deduce that
simply-connectedness implies no torsion in homology.

The proof of Lefschetz’s theorem is very nice. Remember that the
complement of a hyperplane in CPn is just Cn. Consider the function

i

2
∂∂|z |2

Write A for the affine variety Σ ∩ C = Σ \ h and f for the restriction of
|z |2 to A.
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Idea of proof

Make a small perturbation of f to ensure it is Morse. Check that its
critical points have index ≤ m = dim Σ. Now suppose that
g : (Sk , ?)→ (Σ, ? ∈ h) is a based k-sphere representing a homotopy class
[g ]. If k ≤ n − 1 then a small perturbation of g will be transverse to and
hence disjoint from the union of stable manifolds of the upward gradient
flow of f . Flowing this up the gradient flow (fixed in h) will give a
homotopy from g to a homotopy class contained inside h. Hence the map
πk(h)→ πk(Σ) is surjective for k ≤ n − 1. A similarly argument with
based nullhomotopies g : Dk+1 → Σ tells us that the map on πk is
injective for k < n − 1.
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There are many things to check. Most of these will form an extended
exercise. The only thing we’ll really check is that the index of the critical
points is ≤ m = dim Σ.

Exercise

The perturbation of f is made by using the function |z − a|2 for a slightly
different a ∈ Cn. Check that this is generically Morse (i.e. for almost all a)
and hence its critical points are isolated. Check also that there are only
finitely many critical points by thinking about what would happen at
infinity if a sequence of critical points escaped there.

Although we have potentially changed our function slightly (by shifting
basepoint) the resulting function is still plurisubharmonic (i.e. i

2∂∂F is a
nondegenerate 2-form).
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Lemma

A plurisubharmonic Morse function on an affine variety A of dimension m
has critical points of index ≤ m.

Let’s first see this when m = 1. Then A is a complex curve and we’re
trying to show that the plurisubharmonic function has no maximum on A.
But in 2d

2i∂∂f = ∆(f )dx ∧ dy

in conformal coordinates x + iy = z and the plurisubharmonicity is just
saying that ∆(f ) > 0. Now by the maximum principle a function with
∆(f ) > 0 cannot attain a maximum on its interior.
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Proof.

Now let A have larger dimension and suppose the Morse index of a critical
point p is bigger than m. Then there exists a subspace W ⊂ TpA of real
dimension bigger than m such that the Hessian of f is negative definite on
W . Since TpA is i-invariant, iW ⊂ TpA and iW ∩W must be nonzero,
i.e. there is a complex line contained in W . But then consider B, the
complex line in the ambient projective space passing through p with this
tangency. The restriction of the plurisubharmonic function to B now has a
maximum at p, which is again a contradiction.
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More generally we want to run this kind of argument in the setting where
we have no integrable complex structure. What is the right notion of a
plurisubharmonic function?

Exercise

For the standard complex structure i ,

2i∂∂f = −d(df ◦ i)

Definition

An exhausting function φ : X → R (i.e. proper and bounded below) is
called plurisubharmonic with respect to an almost complex structure J if

d(df ◦ J)

is a nondegenerate 2-form (note this is tame but not necessarily
compatible with J).

The only issue is finding local J-holomorphic curves to replace the line B.
This is possible as we will see in a few lectures’ time.
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The contact structure

People have been asking about contact structures. A contact structure on
a manifold M is a field of hyperplanes ξ ⊂ TM satisfying a
non-integrability condition. Here’s a good time to point one out. The
regular level sets of our Morse function have a natural contact structure,
where ξ = TM ∩ JTM. To see that it’s contact, let’s consider the 1-form
α = df ◦ J, i.e. X 7→ df (JX ). Note that the tangent space to M is ker df
so ξ = ker(df ) ∩ ker(α). It remains to prove that

α ∧ dαm−1 6= 0

i.e. that dα is a symplectic form on kerα, but dα = ω is a symplectic
form taming J and ξ is J-holomorphic.
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We often look for symplectic manifolds modelled on a contact manifold M
times R at infinity. Why? Precisely because of the maximum principle
arguments employed above: we know that if the end of our symplectic
manifold admits a plurisubharmonic function then holomorphic curves
must remain in a compact region or else they will have to have a
maximum in the end, which is forbidden by the maximum principle for
subharmonic functions. This kind of control over holomorphic curves is
what we need to prove compactness results in an open manifold.

Jonathan Evans () Lecture IX: Picard-Lefschetz I 18th November 2010 13 / 22



Lefschetz pencils
So we have had a good look at the topology of a projective variety by
cutting it along a hypersurface. Unfortunately the middle-dimensional
topology is still unreachable. To see this we will take a whole
1-complex-parameter family of hypersurface sections. Here’s a simple
example:

Example

A pencil of hyperplanes in CPn is the space of all hyperplanes containing a
fixed linear subspace L of complex codimension 2 (e.g. all lines through a
point in CP2, all planes containing a given line in CP3,...). These
hyperplanes are parametrised by CP1: fixing a point p ∈ L, a hyperplane is
specified uniquely by a normal direction to L at p, but
P(νpL) = P(C2) = CP1 since L has codimension 2.

In fact, pencils of hyperplanes are all one ever needs to think about: if you
want a degree d one-parameter family you can simply embed the ambient
Pn in a bigger PN by the Veronese embedding of degree d and take a
pencil of hyperplane sections.
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Example

Let Q0 = (X 2
0 + X 2

1 + X 2
2 ), Q∞ = (λX 2

0 + µX 2
1 + νX 2

2 ) be a pair of
quadratic forms in three variables and write Q[a:b] = bQ0 + aQ∞. This is a
pencil of conics in CP2. Every point p ∈ CP2 gives a set of simultaneous
equations for a and b such that Q[a:b](p) = 0. For most points there is a
unique solution up to rescaling, but observe that

Q0 ∩ Q1 =
⋂
[a:b]

Q[a:b]

is a locus of (generically 4) points contained in ALL the conics (we’re
writing Qk for both the quadratic form and the conic it defines). This is
called the base locus of the pencil. It’s the intersection of our variety with
the fixed subspace L from the previous example once we’ve embedded via
the degree 2 Veronese map.
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Example (...conics continued)

Note that some members of the pencil are singular! The equation of Q[a:b]

is
(b + a)X 2

0 + (b + aµ)X 2
1 + (b + aν)X 2

2 = 0

which (in this example) is singular exactly when one of the three
coefficients vanishes. Therefore there are three singular members
corresponding to

[1 : λ], [1 : µ], [1 : ν] ∈ CP1

These are nodal conics and just look like pairs of distinct complex lines
intersecting at a single point.

These singularities are actually precisely the information we need to work
out the topology of the whole variety (as we may see next lecture if you’re
not scared of spectral sequences).
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The previous example had two features that we almost always see for all
but the simplest Lefschetz pencils:

There is a base locus of points common to all fibres of the pencil. It’s
easy to see that any two fibres intersect precisely in this base locus: in
general a pencil is spanned by a pair of linearly independent
homogeneous polynomials of degree d , F0 and F∞. If [a : b] 6= [c : d ]
and q in the ambient variety is a point such that
bF0(q) + aF∞(q) = dF0(q) + cF∞(q) then actually any linear
combination of F0 and F∞ can be made to vanish at q.

There are singular fibres. In our example every fibre had at most one
node.
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Definition

A Lefschetz pencil is a pencil of hyperplane sections of a projective variety
such that the base locus is a smooth subvariety and the singular fibres
have at most one nodal singularity.

Proposition

Such a pencil exists on any projective variety.

This is a theorem about picking a suitably transverse pencil of
hyperplanes. We will not prove it, but refer to Voisin’s book (Corollary
2.10). Instead we’ll do more examples!
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First, a comment about the base locus. We really want to think of the
Lefschetz pencil as a map from our variety X to CP1 which sends every
point to hyperplane section on which it lives. Unfortunately points in the
base locus live on more than one hyperplane section (in fact on all of
them!). But we know how to fix this problem (if we were here last week):
we simply need to blow-up the base-locus. I’ll only talk about this for
2-dimensional complex surfaces, so we’re just blowing up points and
replacing them by an exceptional CP1. Smoothness of the base locus
means that when we blow-up, each fibre of the pencil intersects each
exceptional sphere in a single point - the fibres all intersect the base locus
with different tangencies. Therefore each exceptional sphere becomes a
section of the (now well-defined) map

X̃ → CP1

Such a map is called a Lefschetz fibration.
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Example

In our conic example, we blow-up the four base-points and get a map from
the 4-point blow-up of CP2 to CP1 whose generic fibre is a smooth conic
but with three nodal fibres.

Example

Take a pencil cubics instead, spanned by two homogeneous cubic
polynomials F0 and F∞. I leave it to you to check that there are now
twelve singular fibres by computing the X0,X1,X2-derivatives of the
general member bF0 + aF∞ (note that if you take the same formulae for
cubics as we took for conics above you only get three singularities but
they’re not nodal: at each singularity two of the equations for the singular
locus have double zeros, hence “contributing multiplicity 4”, and 3 times 4
is 12). There are obviously nine base points for a generic pair F0,F∞.
Therefore the nine-point blow-up of CP2 has a map to CP1 with twelve
singular fibres.
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Another thing you can do to get rid of the base locus is just to cut out one
fibre (this obviously removes the common intersection of all fibres). This
will give you a Lefschetz fibration on an affine variety whose image is the
complex plane (i.e. CP1 \ {?}). The fibres are also affine varieties: they
are the complements of hyperplane sections OF the hyperplane sections
(i.e. complement of the base locus in a fibre).

Example

Let Q be a quadric surface X0X3 = X1X2. Recall that this is
biholomorphic to CP1 ×CP1 and that the diagonal is a hyperplane section
X1 = X2. The pencil spanned by this and by X0 = X3 has precisely two
singular fibres. These correspond to tangent planes to Q containing the
line [α : β : β : α]. Since they are tangent planes to Q they each intersect
Q along two lines and so are biholomorphic to nodal conics. If we cut out
X1 = X2 then we get the affine quadric surface with a Lefschetz fibration
to C with conic fibres and precisely two nodal singular fibres.
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The total space of a Lefschetz fibration is a projective variety and hence
admits a symplectic (Fubini-Study) form for which the fibres are
symplectic submanifolds. Away from the singular points of the singular
fibres we can actually define a connection on this fibration by defining the
horizontal space at p to be the symplectic orthogonal complement at p to
the fibre through p. Let crit denote the locus of critical points in CP1 for
the Lefschetz fibration.

If γ is a loop in CP1 \ crit then we can parallel transport along the
loop using this symplectic connection in the fibres. Parallel transport
for a smooth connection is always a diffeomorphism, we will see that
for this connection it is actually symplectic. The symplectomorphism
defined by parallel transporting around such a loop is called the
symplectic monodromy of the loop and only depends on the loop up
to homotopy inside CP1 \ crit.
If γ is a path from x 6∈ crit to y ∈ crit then we can try to make sense
of the limit of parallel transport along γ as we approach the node.
This will allow us to define Lagrangian submanifolds called vanishing
cycles.
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