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Last time we played with some explicit quadric and cubic surfaces and we
were led to define blow-ups in order to understand a cubic surface (which
you'll recall is a 5-point blow-up of the quadric). Today we'll see

@ how the first Chern class changes under blow-up,

@ how to see the cubic surface as a blow-up of CP?,
@ how to blow-up a symplectic ball,
o

a proof of Gromov's nonsqueezing theorem on balls (as with
Luttinger's unknottedness theorem, modulo the hard bit involving
pseudoholomorphic curves!).
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Lemma

The first Chern class of the blow-up X of a complex surface X is
a1 (X) — [E].

Proof.

We need to understand how c;(X) acts on Ha(X; Z) = Ha(X; Z) @ Z[E].
Since the first Chern class is Poincaré dual to a codimension 2 homology
class and since the blow-up locus has codimension 4 we know that ¢;(X)
acts as c1(X) on Ho(X;Z) C Hy(X;Z). The only question is how it
evaluates on E. By adjunction we know that ¢;(X)([E]) = c1(E) + c1(vE)
and we observed that vE = O(—1). Since ¢;(E) =2 and

c1(O(—1)) = —1 we get ¢1(X)([E]) = 1. But by Poincaré duality there is
a unique homology class which intersects E with multiplicity 1 and doesn't
intersect any class in Hp(X;Z), and that's —[E]. O
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Here's another example. Consider the quadric surface @ and take a point
p € Q. Most lines through p intersect @ in exactly one other point
(because Q has degree 2) but there are two such lines A, A’ (the
components of the intersection T,Q N Q, or the factors of CP! x CP!)
which are contained in Q. On the complement of these lines there is a
well-defined projection map ¢ : Q \ (AUA’) — CP? (where CP? is the
space of lines through p in CP3). The image of ¢ misses out the line in
CP? corresponding to lines contained in the hyperplane T,Q.

We want to extend the domain of definition of ¢ to the whole of @, but
we don’t know where to send p (it should go to both points g and ¢’
corresponding to the directions A and A’). The solution is to blow-up Q at
p. Now the proper transforms of A and A’ and we have introduced
precisely the right amount of space (a CP?) to fill in the missing line from
CP?. The preimage of g and ¢’ under the extended map (;NS consists of the
proper transforms of A and A\'. Every other point has a unique preimage.
So we have exhibited @ as biholomorphic to the blow-up of CP? at two
points (g and ¢’)!
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To make rigorous sense of what I've just said you should consider the
graph of the map Q \ (AUA') — CP? inside Q x CP? and take its closure.
The result has a projection to Q (which collapses a single exceptional
curve to the point p) and a projection to CP? (which collapses A and A to
g and ¢’ respectively.

In particular we see that the blow-up of Q at one point is the same as the
blow-up of CP? at two points. Since the group of automorphisms of CP?
acts 2-transitively on CP? we can say things like that without specifying
which points we're blowing up. Notice that before we exhibited the
Fermat cubic surface as the blow-up of @ at five points. We see now the
(possibly more familiar) description of a cubic surface as the blow-up of
CPP? at six points. But the group of automorphisms of CP? doesn't act
6-transitively so now it does matter which six points we blow-up.
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It turns out that any cubic surface occurs as a 6-point blow-up of CP?.
For a proof see Griffiths and Harris, but to make it plausible notice that
there are 20 cubic monomials in four variables (so dim¢ PV3 = 19) and
PGL(4,C) has complex dimension 15 (4-by-4 minus 1 for the IP) so the
space of cubic surfaces up to automorphism is 4 complex dimensional. But
PGL(3,C) acts 4-transitively on CPP? so you can generically fix four of the
six blow-up points to be [1:0:0],[0:1:0],[0:0:1],[1:1:1] and you
have two left which each contribute 2 complex dimensions, giving 4.

Not every collection of 6 points work.
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Lemma

In order for a given collection of 6 points to give a blow-up embeddable as
a smooth cubic surface in CP3, no three points can lie on a line and no six
can lie on a conic.

Proof: Collinear case.

Suppose three of the points lie on a line ¥ and let & be the proper
transform. Since the blow-up is assumed to embed as a complex
submanifold of CP3 this proper transform is a symplectic submanifold and
hence the Fubini-Study form gives it nonzero area. But Ej, E, E3 (the
exceptional curves of the three blow-up points on ¥) are also symplectic
and hence have positive area (at least 1, the minimal area of a line in

CP3).
But we know that a cubic surface is Fano, so the Fubini-Study form equals
the first Chern class ¢;(CP?) — [E;] — - -+ — [Eg]. Since c1(CP?)([Z]) = 3,
we get ~ B

wX)=c-[X]=0
a contradiction. A similar argument works for the conic. [
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In fact that's the only condition on the points and any six points no three
of which are collinear and no six of which lie on a conic can be blown up
to obtain a cubic surface (see Griffiths and Harris).
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Symplectic blow-up

Now we want to do symplectic blow-up. The idea in complex blow-up was
to cut out a Zariski open set C2 and replace it by C2. Symplectically we
need to cut out a Darboux neighbourhood of a point and replace it by a
neighbourhood of the exceptional curve in C2. A Darboux neighbourhood
comes with some extra baggage, namely a radius, so we need to blow-up a

ball.
(The point is that rescaling of C2 is a complex automorphism, but not a

symplectomorphism).
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o Let ¢: (Br,wp) = (X,w) be an embedding of a radius r 4-ball in a
symplectic 4-manifold. This embedding is symplectic if t*w = wp
where wq is the standard form on R* restricted to B,.

@ Suppose we can extend the symplectic embedding to a slightly larger
ball t¢ : Brye — X so as to give ourselves a neck B,y \ B,. We want
to cut out +(B,) and glue in B;.

@ This latter is just the preimage of Bs under the blow-up map
7 : C2 — C2. It has a natural family of symplectic forms inherited
from the ambient C2 x CP! in which C2 sits, namely
wy = pjwo + >\2p§w,:5 (where p1, pp are the projections of €2 to C2
and CP! respectively and A\ > 0).

Unfortunately the obvious gluing map (taking 6 = r + € and just
identifying points away from E) isn't a symplectomorphism. However...
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Lemma

(Bg \ E,w,) is symplectomorphic to (B, sorg \ By, wo)-

Proof.
This is not a nice proof, so it's a guided exercise.
o Consider the map 7 : C2\ {0} — CP!. Prove that
Twrs = 500 log(|z|?).
o Let
F:Bs\ E=Bs\ {0} = B a5z \ Bx

A2
Z—z4 |14+ —
|2|2

Then Frwy = $00(|z|* + A% log(|z|?)).

be the map
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Now set X = (X \ By) ][] Bs/ ~ where ~ identifies x € Bs \ E with
F(x) € B\/m\ B\. The symplectic forms agree on the overlap so we
get a symplectic form @y on the blow-up.

Lemma
The cohomology class of & is [w] — A\2P.D.[E].

Proof.

Even to make sense of the lemma we need to use Mayer-Vietoris. Split X
as (X \ By) U B;s. Since the overlap retracts to S3 we get

0 — H2(X) = H*(X \ B)) & H*(Bs) = 0

But H?(X \ By) = H?(X) and H?(Bs) = Z[E]. We know that

©|x\8, = w|x\B, S0 we only need to work out what &|g; represents in a
neighbourhood of E, i.e. what area it gives the exceptional curve. But by
construction &|g = ANwrs. Since E2 = —1, [ & = A\?(—E) - E, which
gives the result. [

v
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@ Since we know that the cohomology class of & is independent of the
choices we made (e.g. of an extension of ¢ to a slightly larger
embedding) we know by Moser’s argument that up to
symplectomorphism the blow-up form does not depend on these
choices.

o If we are a little more careful (see McDuff-Salamon Lemma 7.15) we
can prove

Proposition

Let v : (By,wo) — (X,w) be a symplectic embedding and let J be an
w-tame almost complex structure on X extending the complex structure
F*Jo (here F is a diffeomorphism By — B Wimwr ). Then there exists a
symplectic form & on X taming the almost complex structure J, such that
if k: X — X is the blow-down map then k*w = @& in the complement of a
neighbourhood of the exceptional curve E and such that

[©] = [w] — \2P.D.[E].
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Proper transform for pseudoholomorphic curves

If ¥ is a complex curve for the standard complex structure on the ball we
can take its proper transform under the complex blow-up to obtain a
complex curve in the blow-up. The same works in the symplectic case if we
use the J mentioned in the previous proposition: as long as J is integrable
near the blow-up point we can take the proper transform and if we use this
special J then the blown-up almost complex structure is &-tamed.

In particular, suppose u: ¥ — X is a J-holomorphic curve, that is a map u
from a Riemann surface (X,/) to X such that

duoj=Jodu

and suppose that J is the special almost complex structure from the
proposition. Then we can take the proper transform of u and get a
J-holomorphic map & : ¥ — X. This is a @-symplectic submanifold.
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We will use this construction to prove Gromov's nonsqueezing theorem.
What is this theorem about?

Problem

Darboux’s theorem tells us that at every point p there is a symplectically
embedded ball of some radius centred at p. How big can we make this
radius?

Suppose we know that for any w-compatible almost complex structure J
there is a J-holomorphic curve passing through p. Blowing up in a ball
centred at p we can use a J which is standard on the ball and lift the
J-holomorphic curve u to a J-holomorphic curve @ in X.
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Now & represents the homology class [u] — [E] so
o([a]) = w([u]) - A®

Since @i is complex for an @-compatible almost complex structure, it is also
symplectic so it has positive @-area, therefore

[w] - [u] > A?

which gives an upper bound for possible radii A in terms of the area of
holomorphic curves passing through p.

All we need to do to apply this argument is to find pseudoholomorphic
curves through p.
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Theorem (Nonsqueezing theorem)

Ifv: B — B,% x R2 js a symplectic embedding then r < R.

Proof.

Let S be a large square in R? such that B2 x S contains the image of ¢.
Embed B,% x S into S? x T? where the first factor has area 7R? + € and
the second factor is just S with its opposite sides identified. We will show
later in the course that in a symplectic manifold S% x V/, for any

wg2 @B wy-compatible almost complex structure J there is always a
J-holomorphic sphere homologous to S? x {x} through any point. This
has area mTR? + ¢, so letting € — 0 proves the theorem by our previous

argument. []

v
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| want to finish with some basic remarks:
@ None of this relies on working in 4-dimensions: we can blow up a
point in any complex n- (or symplectic 2n-) manifold and replace it
by a CP"~L. All the equations we have written work in that context.

@ In fact you can ‘blow-up’ a complex/symplectic submanifold by
replacing each point on it by the projective space of lines in its
complex normal bundle. | won't dwell on this but | might use it in a
couple of lectures’ time to give an example of a simply-connected
non-Kahler manifold.

@ There is a very nice topological picture for what's going on with a
blow-up related to the Hopf fibration...
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Recall: Hopf fibration

How do the complex lines in C" intersect the boundary of a standard ball
(i.e. a sphere)?

The map h: C2\ {0} > (x,y) = [x : y] sending a point to the unique
complex line through it can be restricted to the unit S3 C C2?\ {0}. The
fibre of this map is a circle:

AH([L D) = {06 ) = IxP(L+ [AP) = 1}
hH[0:1]) = {(0,y) : Iy = 1}
Therefore we have a bundle
st— s
CIP’ll: s?
This is called the Hopf fibration.
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The idea of symplectic blow-up is therefore to cut out the ball and collapse
the Hopf circles on the boundary down to points, i.e. form the quotient
space y

X =(X\B)/~

where the Hopf circles are the equivalence classes of ~.
In fact these circles are the orbits of the S'-action generated by the

Hamiltonian function |z|>. We will see more constructions like this in a
few lectures’ time.
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