Lecture VIII: Symplectic blow-up

Jonathan Evans

11th November 2010

Jonathan Evans ()

Lecture VIII: Symplectic blow-up

11th November 2010 1 / 20

- 一司

Last time we played with some explicit quadric and cubic surfaces and we were led to define blow-ups in order to understand a cubic surface (which you'll recall is a 5-point blow-up of the quadric). Today we'll see

- how the first Chern class changes under blow-up,
- \bullet how to see the cubic surface as a blow-up of $\mathbb{CP}^2,$
- how to blow-up a symplectic ball,
- a proof of Gromov's nonsqueezing theorem on balls (as with Luttinger's unknottedness theorem, modulo the hard bit involving pseudoholomorphic curves!).

イロト イポト イヨト イヨト

Lemma

The first Chern class of the blow-up \tilde{X} of a complex surface X is $\pi^* c_1(X) - [E]$.

Proof.

We need to understand how $c_1(\tilde{X})$ acts on $H_2(\tilde{X}; \mathbb{Z}) = H_2(X; \mathbb{Z}) \oplus \mathbb{Z}[E]$. Since the first Chern class is Poincaré dual to a codimension 2 homology class and since the blow-up locus has codimension 4 we know that $c_1(\tilde{X})$ acts as $c_1(X)$ on $H_2(X; \mathbb{Z}) \subset H_2(\tilde{X}; \mathbb{Z})$. The only question is how it evaluates on E. By adjunction we know that $c_1(\tilde{X})([E]) = c_1(E) + c_1(\nu E)$ and we observed that $\nu E = \mathcal{O}(-1)$. Since $c_1(E) = 2$ and $c_1(\mathcal{O}(-1)) = -1$ we get $c_1(\tilde{X})([E]) = 1$. But by Poincaré duality there is a unique homology class which intersects E with multiplicity 1 and doesn't intersect any class in $H_2(X; \mathbb{Z})$, and that's -[E].

- 34

(日) (四) (三) (三)

Here's another example. Consider the quadric surface Q and take a point $p \in Q$. Most lines through p intersect Q in exactly one other point (because Q has degree 2) but there are two such lines Λ , Λ' (the components of the intersection $T_{\rho}Q \cap Q$, or the factors of $\mathbb{CP}^1 \times \mathbb{CP}^1$) which are contained in Q. On the complement of these lines there is a well-defined projection map $\phi: Q \setminus (\Lambda \cup \Lambda') \to \mathbb{CP}^2$ (where \mathbb{CP}^2 is the space of lines through p in \mathbb{CP}^3). The image of ϕ misses out the line in \mathbb{CP}^2 corresponding to lines contained in the hyperplane $T_p Q$. We want to extend the domain of definition of ϕ to the whole of Q, but we don't know where to send p (it should go to both points q and q' corresponding to the directions Λ and Λ'). The solution is to blow-up Q at p. Now the proper transforms of Λ and Λ' and we have introduced precisely the right amount of space (a \mathbb{CP}^1) to fill in the missing line from \mathbb{CP}^2 . The preimage of q and q' under the extended map $\tilde{\phi}$ consists of the proper transforms of Λ and Λ' . Every other point has a unique preimage. So we have exhibited \tilde{Q} as biholomorphic to the blow-up of \mathbb{CP}^2 at two points (q and q')!

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

To make rigorous sense of what I've just said you should consider the graph of the map $Q \setminus (\Lambda \cup \Lambda') \to \mathbb{CP}^2$ inside $Q \times \mathbb{CP}^2$ and take its closure. The result has a projection to Q (which collapses a single exceptional curve to the point p) and a projection to \mathbb{CP}^2 (which collapses $\tilde{\Lambda}$ and $\tilde{\Lambda}'$ to q and q' respectively.

In particular we see that the blow-up of Q at one point is the same as the blow-up of \mathbb{CP}^2 at two points. Since the group of automorphisms of \mathbb{CP}^2 acts 2-transitively on \mathbb{CP}^2 we can say things like that without specifying which points we're blowing up. Notice that before we exhibited the Fermat cubic surface as the blow-up of Q at five points. We see now the (possibly more familiar) description of a cubic surface as the blow-up of \mathbb{CP}^2 at six points. But the group of automorphisms of \mathbb{CP}^2 doesn't act 6-transitively so now it does matter which six points we blow-up.

It turns out that any cubic surface occurs as a 6-point blow-up of \mathbb{CP}^2 . For a proof see Griffiths and Harris, but to make it plausible notice that there are 20 cubic monomials in four variables (so dim_C $\mathbb{P}V_3 = 19$) and $\mathbb{P}GL(4,\mathbb{C})$ has complex dimension 15 (4-by-4 minus 1 for the \mathbb{P}) so the space of cubic surfaces up to automorphism is 4 complex dimensional. But $\mathbb{P}GL(3,\mathbb{C})$ acts 4-transitively on \mathbb{CP}^2 so you can generically fix four of the six blow-up points to be [1:0:0], [0:1:0], [0:0:1], [1:1:1] and you have two left which each contribute 2 complex dimensions, giving 4. Not every collection of 6 points work.

Lemma

In order for a given collection of 6 points to give a blow-up embeddable as a smooth cubic surface in \mathbb{CP}^3 , no three points can lie on a line and no six can lie on a conic.

Proof: Collinear case.

Suppose three of the points lie on a line Σ and let $\tilde{\Sigma}$ be the proper transform. Since the blow-up is assumed to embed as a complex submanifold of \mathbb{CP}^3 this proper transform is a symplectic submanifold and hence the Fubini-Study form gives it nonzero area. But E_1 , E_2 , E_3 (the exceptional curves of the three blow-up points on Σ) are also symplectic and hence have positive area (at least 1, the minimal area of a line in \mathbb{CP}^3).

But we know that a cubic surface is Fano, so the Fubini-Study form equals the first Chern class $c_1(\mathbb{CP}^2) - [E_1] - \cdots - [E_6]$. Since $c_1(\mathbb{CP}^2)([\Sigma]) = 3$, we get

$$\omega(\tilde{\Sigma}) = c_1 \cdot [\tilde{\Sigma}] = 0$$

a contradiction. A similar argument works for the conic.

7 / 20

In fact that's the only condition on the points and any six points no three of which are collinear and no six of which lie on a conic can be blown up to obtain a cubic surface (see Griffiths and Harris). Now we want to do symplectic blow-up. The idea in complex blow-up was to cut out a Zariski open set \mathbb{C}^2 and replace it by $\tilde{\mathbb{C}}^2$. Symplectically we need to cut out a Darboux neighbourhood of a point and replace it by a neighbourhood of the exceptional curve in $\tilde{\mathbb{C}}^2$. A Darboux neighbourhood comes with some extra baggage, namely a radius, so we need to blow-up a ball.

(The point is that rescaling of \mathbb{C}^2 is a complex automorphism, but not a symplectomorphism).

- Let $\iota : (B_r, \omega_0) \to (X, \omega)$ be an embedding of a radius r 4-ball in a symplectic 4-manifold. This embedding is symplectic if $\iota^* \omega = \omega_0$ where ω_0 is the standard form on \mathbb{R}^4 restricted to B_r .
- Suppose we can extend the symplectic embedding to a slightly larger ball $\iota_{\epsilon}: B_{r+\epsilon} \to X$ so as to give ourselves a neck $B_{r+\epsilon} \setminus B_r$. We want to cut out $\iota(B_r)$ and glue in \tilde{B}_{δ} .
- This latter is just the preimage of B_δ under the blow-up map π : C̃² → C². It has a natural family of symplectic forms inherited from the ambient C² × CP¹ in which C̃² sits, namely ω_λ = p₁^{*}ω₀ + λ²p₂^{*}ω_{FS} (where p₁, p₂ are the projections of C̃² to C² and CP¹ respectively and λ > 0).

Unfortunately the obvious gluing map (taking $\delta = r + \epsilon$ and just identifying points away from *E*) isn't a symplectomorphism. However...

Lemma

$$(\tilde{B}_{\delta} \setminus E, \omega_{\lambda})$$
 is symplectomorphic to $(B_{\sqrt{\lambda^2 + \delta^2}} \setminus B_{\lambda}, \omega_0)$.

Proof.

This is not a nice proof, so it's a guided exercise.

• Consider the map $\pi : \mathbb{C}^2 \setminus \{0\} \to \mathbb{CP}^1$. Prove that $\pi^* \omega_{FS} = \frac{i}{2} \partial \overline{\partial} \log(|z|^2).$

• Let

$$F: \tilde{B}_{\delta} \setminus E = B_{\delta} \setminus \{0\} o B_{\sqrt{\lambda^2 + \delta^2}} \setminus \overline{B}_{\delta}$$

be the map

$$z \mapsto z \sqrt{1 + \frac{\lambda^2}{|z|^2}}$$

Then $F^*\omega_0 = \frac{i}{2}\partial\overline{\partial}(|z|^2 + \lambda^2 \log(|z|^2)).$

3

3 ×

A B > A
A
B > A
A

Now set $\tilde{X} = (X \setminus B_{\lambda}) \coprod \tilde{B}_{\delta} / \sim$ where \sim identifies $x \in \tilde{B}_{\delta} \setminus E$ with $F(x) \in B_{\sqrt{\lambda^2 + \delta^2}} \setminus B_{\lambda}$. The symplectic forms agree on the overlap so we get a symplectic form $\tilde{\omega}_{\lambda}$ on the blow-up.

Lemma

The cohomology class of $\tilde{\omega}$ is $[\omega] - \lambda^2 P.D.[E]$.

Proof.

Even to make sense of the lemma we need to use Mayer-Vietoris. Split \tilde{X} as $(X \setminus B_{\lambda}) \cup \tilde{B}_{\delta}$. Since the overlap retracts to S^3 we get

$$0 o H^2(ilde{X}) o H^2(X \setminus B_\lambda) \oplus H^2(ilde{B}_\delta) o 0$$

But $H^2(X \setminus B_{\lambda}) = H^2(X)$ and $H^2(B_{\delta}) = \mathbb{Z}[E]$. We know that $\tilde{\omega}|_{X \setminus B_{\lambda}} = \omega|_{X \setminus B_{\lambda}}$ so we only need to work out what $\tilde{\omega}|_{B_{\delta}}$ represents in a neighbourhood of E, i.e. what area it gives the exceptional curve. But by construction $\tilde{\omega}|_E = \lambda^2 \omega_{FS}$. Since $E^2 = -1$, $\int_E \tilde{\omega} = \lambda^2 (-E) \cdot E$, which gives the result.

- Since we know that the cohomology class of ω̃ is independent of the choices we made (e.g. of an extension of ι to a slightly larger embedding) we know by Moser's argument that up to symplectomorphism the blow-up form does not depend on these choices.
- If we are a little more careful (see McDuff-Salamon Lemma 7.15) we can prove

Proposition

Let $\iota : (B_{\lambda}, \omega_0) \to (X, \omega)$ be a symplectic embedding and let J be an ω -tame almost complex structure on X extending the complex structure F^*J_0 (here F is a diffeomorphism $B_{\lambda} \to B_{\sqrt{1+4\epsilon^2}}$). Then there exists a symplectic form $\tilde{\omega}$ on \tilde{X} taming the almost complex structure \tilde{J} , such that if $\kappa : \tilde{X} \to X$ is the blow-down map then $\kappa^*\omega = \tilde{\omega}$ in the complement of a neighbourhood of the exceptional curve E and such that $[\tilde{\omega}] = [\omega] - \lambda^2 P.D.[E].$

・ロト ・回ト ・ヨト

Proper transform for pseudoholomorphic curves

If Σ is a complex curve for the standard complex structure on the ball we can take its proper transform under the complex blow-up to obtain a complex curve in the blow-up. The same works in the symplectic case if we use the *J* mentioned in the previous proposition: as long as *J* is integrable near the blow-up point we can take the proper transform and if we use this special *J* then the blown-up almost complex structure is $\tilde{\omega}$ -tamed. In particular, suppose $u : \Sigma \to X$ is a *J*-holomorphic curve, that is a map *u* from a Riemann surface (Σ, j) to *X* such that

$$du \circ j = J \circ du$$

and suppose that J is the special almost complex structure from the proposition. Then we can take the proper transform of u and get a \tilde{J} -holomorphic map $\tilde{u}: \Sigma \to \tilde{X}$. This is a $\tilde{\omega}$ -symplectic submanifold.

We will use this construction to prove Gromov's nonsqueezing theorem. What is this theorem about?

Problem

Darboux's theorem tells us that at every point p there is a symplectically embedded ball of some radius centred at p. How big can we make this radius?

Suppose we know that for any ω -compatible almost complex structure J there is a J-holomorphic curve passing through p. Blowing up in a ball centred at p we can use a J which is standard on the ball and lift the J-holomorphic curve u to a \tilde{J} -holomorphic curve \tilde{u} in \tilde{X} .

Now \tilde{u} represents the homology class [u] - [E] so

$$\widetilde{\omega}([\widetilde{u}]) = \omega([u]) - \lambda^2$$

Since \tilde{u} is complex for an $\tilde{\omega}$ -compatible almost complex structure, it is also symplectic so it has positive $\tilde{\omega}$ -area, therefore

$$[\omega] \cdot [u] > \lambda^2$$

which gives an upper bound for possible radii λ in terms of the area of holomorphic curves passing through p.

All we need to do to apply this argument is to find pseudoholomorphic curves through p.

Theorem (Nonsqueezing theorem)

If $\iota: B_r \to B_R^2 \times \mathbb{R}^2$ is a symplectic embedding then $r \leq R$.

Proof.

Let S be a large square in \mathbb{R}^2 such that $B_R^2 \times S$ contains the image of ι . Embed $B_R^2 \times S$ into $S^2 \times T^2$ where the first factor has area $\pi R^2 + \epsilon$ and the second factor is just S with its opposite sides identified. We will show later in the course that in a symplectic manifold $S^2 \times V$, for any $\omega_{S^2} \oplus \omega_V$ -compatible almost complex structure J there is always a J-holomorphic sphere homologous to $S^2 \times \{\star\}$ through any point. This has area $\pi R^2 + \epsilon$, so letting $\epsilon \to 0$ proves the theorem by our previous argument.

- 31

イロン イヨン イヨン イヨン

I want to finish with some basic remarks:

- None of this relies on working in 4-dimensions: we can blow up a point in any complex n- (or symplectic 2n-) manifold and replace it by a CPⁿ⁻¹. All the equations we have written work in that context.
- In fact you can 'blow-up' a complex/symplectic submanifold by replacing each point on it by the projective space of lines in its complex normal bundle. I won't dwell on this but I might use it in a couple of lectures' time to give an example of a simply-connected non-Kähler manifold.
- There is a very nice topological picture for what's going on with a blow-up related to the Hopf fibration...

- 34

Recall: Hopf fibration

How do the complex lines in \mathbb{C}^n intersect the boundary of a standard ball (i.e. a sphere)? The map $h : \mathbb{C}^2 \setminus \{0\} \ni (x, y) \mapsto [x : y]$ sending a point to the unique complex line through it can be restricted to the unit $S^3 \subset \mathbb{C}^2 \setminus \{0\}$. The

fibre of this map is a circle:

$$\begin{split} h^{-1}([1:\lambda]) &= \{(x,\lambda x): |x|^2(1+|\lambda|^2) = 1\}\\ h^{-1}([0:1]) &= \{(0,y): |y|^2 = 1\} \end{split}$$

Therefore we have a bundle

This is called the Hopf fibration.

The idea of symplectic blow-up is therefore to cut out the ball and collapse the Hopf circles on the boundary down to points, i.e. form the quotient space

$$ilde{X} = (X \setminus B_r) / \sim$$

where the Hopf circles are the equivalence classes of \sim .

In fact these circles are the orbits of the S^1 -action generated by the Hamiltonian function $|z|^2$. We will see more constructions like this in a few lectures' time.