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Last time we played with some explicit quadric and cubic surfaces and we
were led to define blow-ups in order to understand a cubic surface (which
you’ll recall is a 5-point blow-up of the quadric). Today we’ll see

how the first Chern class changes under blow-up,

how to see the cubic surface as a blow-up of CP2,

how to blow-up a symplectic ball,

a proof of Gromov’s nonsqueezing theorem on balls (as with
Luttinger’s unknottedness theorem, modulo the hard bit involving
pseudoholomorphic curves!).
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Lemma

The first Chern class of the blow-up X̃ of a complex surface X is
π∗c1(X )− [E ].

Proof.

We need to understand how c1(X̃ ) acts on H2(X̃ ;Z) = H2(X ;Z)⊕ Z[E ].
Since the first Chern class is Poincaré dual to a codimension 2 homology
class and since the blow-up locus has codimension 4 we know that c1(X̃ )
acts as c1(X ) on H2(X ;Z) ⊂ H2(X̃ ;Z). The only question is how it
evaluates on E . By adjunction we know that c1(X̃ )([E ]) = c1(E ) + c1(νE )
and we observed that νE = O(−1). Since c1(E ) = 2 and
c1(O(−1)) = −1 we get c1(X̃ )([E ]) = 1. But by Poincaré duality there is
a unique homology class which intersects E with multiplicity 1 and doesn’t
intersect any class in H2(X ;Z), and that’s −[E ].
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Here’s another example. Consider the quadric surface Q and take a point
p ∈ Q. Most lines through p intersect Q in exactly one other point
(because Q has degree 2) but there are two such lines Λ, Λ′ (the
components of the intersection TpQ ∩ Q, or the factors of CP1 × CP1)
which are contained in Q. On the complement of these lines there is a
well-defined projection map φ : Q \ (Λ ∪ Λ′)→ CP2 (where CP2 is the
space of lines through p in CP3). The image of φ misses out the line in
CP2 corresponding to lines contained in the hyperplane TpQ.
We want to extend the domain of definition of φ to the whole of Q, but
we don’t know where to send p (it should go to both points q and q′

corresponding to the directions Λ and Λ′). The solution is to blow-up Q at
p. Now the proper transforms of Λ and Λ′ and we have introduced
precisely the right amount of space (a CP1) to fill in the missing line from
CP2. The preimage of q and q′ under the extended map φ̃ consists of the
proper transforms of Λ and Λ′. Every other point has a unique preimage.
So we have exhibited Q̃ as biholomorphic to the blow-up of CP2 at two
points (q and q′)!
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To make rigorous sense of what I’ve just said you should consider the
graph of the map Q \ (Λ∪ Λ′)→ CP2 inside Q ×CP2 and take its closure.
The result has a projection to Q (which collapses a single exceptional
curve to the point p) and a projection to CP2 (which collapses Λ̃ and Λ̃′ to
q and q′ respectively.
In particular we see that the blow-up of Q at one point is the same as the
blow-up of CP2 at two points. Since the group of automorphisms of CP2

acts 2-transitively on CP2 we can say things like that without specifying
which points we’re blowing up. Notice that before we exhibited the
Fermat cubic surface as the blow-up of Q at five points. We see now the
(possibly more familiar) description of a cubic surface as the blow-up of
CP2 at six points. But the group of automorphisms of CP2 doesn’t act
6-transitively so now it does matter which six points we blow-up.
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It turns out that any cubic surface occurs as a 6-point blow-up of CP2.
For a proof see Griffiths and Harris, but to make it plausible notice that
there are 20 cubic monomials in four variables (so dimC PV3 = 19) and
PGL(4,C) has complex dimension 15 (4-by-4 minus 1 for the P) so the
space of cubic surfaces up to automorphism is 4 complex dimensional. But
PGL(3,C) acts 4-transitively on CP2 so you can generically fix four of the
six blow-up points to be [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1] and you
have two left which each contribute 2 complex dimensions, giving 4.
Not every collection of 6 points work.
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Lemma

In order for a given collection of 6 points to give a blow-up embeddable as
a smooth cubic surface in CP3, no three points can lie on a line and no six
can lie on a conic.

Proof: Collinear case.

Suppose three of the points lie on a line Σ and let Σ̃ be the proper
transform. Since the blow-up is assumed to embed as a complex
submanifold of CP3 this proper transform is a symplectic submanifold and
hence the Fubini-Study form gives it nonzero area. But E1, E2, E3 (the
exceptional curves of the three blow-up points on Σ) are also symplectic
and hence have positive area (at least 1, the minimal area of a line in
CP3).
But we know that a cubic surface is Fano, so the Fubini-Study form equals
the first Chern class c1(CP2)− [E1]− · · · − [E6]. Since c1(CP2)([Σ]) = 3,
we get

ω(Σ̃) = c1 · [Σ̃] = 0

a contradiction. A similar argument works for the conic.
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In fact that’s the only condition on the points and any six points no three
of which are collinear and no six of which lie on a conic can be blown up
to obtain a cubic surface (see Griffiths and Harris).
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Symplectic blow-up

Now we want to do symplectic blow-up. The idea in complex blow-up was
to cut out a Zariski open set C2 and replace it by C̃2. Symplectically we
need to cut out a Darboux neighbourhood of a point and replace it by a
neighbourhood of the exceptional curve in C̃2. A Darboux neighbourhood
comes with some extra baggage, namely a radius, so we need to blow-up a
ball.
(The point is that rescaling of C2 is a complex automorphism, but not a
symplectomorphism).
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Let ι : (Br , ω0)→ (X , ω) be an embedding of a radius r 4-ball in a
symplectic 4-manifold. This embedding is symplectic if ι∗ω = ω0

where ω0 is the standard form on R4 restricted to Br .

Suppose we can extend the symplectic embedding to a slightly larger
ball ιε : Br+ε → X so as to give ourselves a neck Br+ε \ Br . We want
to cut out ι(Br ) and glue in B̃δ.

This latter is just the preimage of Bδ under the blow-up map
π : C̃2 → C2. It has a natural family of symplectic forms inherited
from the ambient C2 × CP1 in which C̃2 sits, namely
ωλ = p∗1ω0 + λ2p∗2ωFS (where p1, p2 are the projections of C̃2 to C2

and CP1 respectively and λ > 0).

Unfortunately the obvious gluing map (taking δ = r + ε and just
identifying points away from E ) isn’t a symplectomorphism. However...
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Lemma

(B̃δ \ E , ωλ) is symplectomorphic to (B√λ2+δ2 \ Bλ, ω0).

Proof.

This is not a nice proof, so it’s a guided exercise.

Consider the map π : C2 \ {0} → CP1. Prove that
π∗ωFS = i

2∂∂ log(|z |2).

Let
F : B̃δ \ E = Bδ \ {0} → B√λ2+δ2 \ Bλ

be the map

z 7→ z

√
1 +

λ2

|z |2

Then F ∗ω0 = i
2∂∂(|z |2 + λ2 log(|z |2)).
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Now set X̃ = (X \ Bλ)
∐

B̃δ/ ∼ where ∼ identifies x ∈ B̃δ \ E with
F (x) ∈ B√λ2+δ2 \ Bλ. The symplectic forms agree on the overlap so we
get a symplectic form ω̃λ on the blow-up.

Lemma

The cohomology class of ω̃ is [ω]− λ2P.D.[E ].

Proof.

Even to make sense of the lemma we need to use Mayer-Vietoris. Split X̃
as (X \ Bλ) ∪ B̃δ. Since the overlap retracts to S3 we get

0→ H2(X̃ )→ H2(X \ Bλ)⊕ H2(B̃δ)→ 0

But H2(X \ Bλ) = H2(X ) and H2(Bδ) = Z[E ]. We know that
ω̃|X\Bλ

= ω|X\Bλ
so we only need to work out what ω̃|Bδ

represents in a
neighbourhood of E , i.e. what area it gives the exceptional curve. But by
construction ω̃|E = λ2ωFS . Since E 2 = −1,

∫
E ω̃ = λ2(−E ) · E , which

gives the result.
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Since we know that the cohomology class of ω̃ is independent of the
choices we made (e.g. of an extension of ι to a slightly larger
embedding) we know by Moser’s argument that up to
symplectomorphism the blow-up form does not depend on these
choices.

If we are a little more careful (see McDuff-Salamon Lemma 7.15) we
can prove

Proposition

Let ι : (Bλ, ω0)→ (X , ω) be a symplectic embedding and let J be an
ω-tame almost complex structure on X extending the complex structure
F ∗J0 (here F is a diffeomorphism Bλ → B√1+4ε2). Then there exists a

symplectic form ω̃ on X̃ taming the almost complex structure J̃, such that
if κ : X̃ → X is the blow-down map then κ∗ω = ω̃ in the complement of a
neighbourhood of the exceptional curve E and such that
[ω̃] = [ω]− λ2P.D.[E ].
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Proper transform for pseudoholomorphic curves

If Σ is a complex curve for the standard complex structure on the ball we
can take its proper transform under the complex blow-up to obtain a
complex curve in the blow-up. The same works in the symplectic case if we
use the J mentioned in the previous proposition: as long as J is integrable
near the blow-up point we can take the proper transform and if we use this
special J then the blown-up almost complex structure is ω̃-tamed.
In particular, suppose u : Σ→ X is a J-holomorphic curve, that is a map u
from a Riemann surface (Σ, j) to X such that

du ◦ j = J ◦ du

and suppose that J is the special almost complex structure from the
proposition. Then we can take the proper transform of u and get a
J̃-holomorphic map ũ : Σ→ X̃ . This is a ω̃-symplectic submanifold.
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We will use this construction to prove Gromov’s nonsqueezing theorem.
What is this theorem about?

Problem

Darboux’s theorem tells us that at every point p there is a symplectically
embedded ball of some radius centred at p. How big can we make this
radius?

Suppose we know that for any ω-compatible almost complex structure J
there is a J-holomorphic curve passing through p. Blowing up in a ball
centred at p we can use a J which is standard on the ball and lift the
J-holomorphic curve u to a J̃-holomorphic curve ũ in X̃ .
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Now ũ represents the homology class [u]− [E ] so

ω̃([ũ]) = ω([u])− λ2

Since ũ is complex for an ω̃-compatible almost complex structure, it is also
symplectic so it has positive ω̃-area, therefore

[ω] · [u] > λ2

which gives an upper bound for possible radii λ in terms of the area of
holomorphic curves passing through p.
All we need to do to apply this argument is to find pseudoholomorphic
curves through p.
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Theorem (Nonsqueezing theorem)

If ι : Br → B2
R × R2 is a symplectic embedding then r ≤ R.

Proof.

Let S be a large square in R2 such that B2
R × S contains the image of ι.

Embed B2
R × S into S2 × T 2 where the first factor has area πR2 + ε and

the second factor is just S with its opposite sides identified. We will show
later in the course that in a symplectic manifold S2 × V , for any
ωS2 ⊕ ωV -compatible almost complex structure J there is always a
J-holomorphic sphere homologous to S2 × {?} through any point. This
has area πR2 + ε, so letting ε→ 0 proves the theorem by our previous
argument.
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I want to finish with some basic remarks:

None of this relies on working in 4-dimensions: we can blow up a
point in any complex n- (or symplectic 2n-) manifold and replace it
by a CPn−1. All the equations we have written work in that context.

In fact you can ‘blow-up’ a complex/symplectic submanifold by
replacing each point on it by the projective space of lines in its
complex normal bundle. I won’t dwell on this but I might use it in a
couple of lectures’ time to give an example of a simply-connected
non-Kähler manifold.

There is a very nice topological picture for what’s going on with a
blow-up related to the Hopf fibration...
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Recall: Hopf fibration

How do the complex lines in Cn intersect the boundary of a standard ball
(i.e. a sphere)?
The map h : C2 \ {0} 3 (x , y) 7→ [x : y ] sending a point to the unique
complex line through it can be restricted to the unit S3 ⊂ C2 \ {0}. The
fibre of this map is a circle:

h−1([1 : λ]) = {(x , λx) : |x |2(1 + |λ|2) = 1}
h−1([0 : 1]) = {(0, y) : |y |2 = 1}

Therefore we have a bundle

S1 −−−−→ S3y
CP1 = S2

This is called the Hopf fibration.
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The idea of symplectic blow-up is therefore to cut out the ball and collapse
the Hopf circles on the boundary down to points, i.e. form the quotient
space

X̃ = (X \ Br )/ ∼

where the Hopf circles are the equivalence classes of ∼.
In fact these circles are the orbits of the S1-action generated by the
Hamiltonian function |z |2. We will see more constructions like this in a
few lectures’ time.
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