Lecture VII: Projective varieties II

Jonathan Evans

4th November 2010

Last lecture we defined a Kähler symplectic structure (the Fubini-Study form $\omega_{F S}$) on $\mathbb{C P}^{n}$ and this enabled us to write down some examples of symplectic manifolds (complex subvarieties of $\mathbb{C} \mathbb{P}^{n}$). We investigated hypersurfaces more thoroughly and found that their Chern classes are given by the following formula

$$
\binom{n+1}{k} h^{k}=c_{k}(\Sigma)+d h \cup c_{k-1}(\Sigma)
$$

where Σ is a hypersurface of degree d. Here h is the cohomology class in Σ Poincaré dual to a hyperplane section $\Sigma \cap H$. Since the Fubini-Study form has cohomology class H its restriction to Σ has cohomology class h. We finished by observing the special case

$$
c_{1}(\Sigma)=(n+1-d)\left[\omega_{F S}\right]
$$

which implies a trichotomy: $d<n+1, d=n+1, d>n+1$ between symplectic Fano, symplectic Calabi-Yau and symplectic general type hypersurfaces. Note that the Chern class calculations hold true for any real codimension 2 symplectic submanifold of $\mathbb{C P}^{n}$ with homology class $d H$.

Today we will explore the topology of hypersurfaces further. Why?

- Because for me they're the symplectic manifolds which form the basis of my intuition,
- Because it's easy to describe some of their symplectic submanifolds (their own hyperplane sections),
- Because they admit many interesting Lagrangian submanifolds (some of which we have already met: their real loci; some of which we will meet in a couple of lecture's time: their vanishing cycles).
- Because they exhibit many interesting features which generalise to other (non-projective) symplectic manifolds, for example the blow-up construction we'll see later in this lecture has an analogue in the symplectic world.
Since much work in symplectic topology has focused on 4-dimensional symplectic manifolds, we will emphasise the case of complex surfaces in $\mathbb{C P}^{3}$.

We begin by noticing that...

Proposition

If X_{0} and X_{1} are projective hypersurfaces of the same dimension and the same degree then they are symplectomorphic.

Proof.

We know that the space of singular hypersurfaces has complex codimension one in $\mathbb{P} V_{d}$ so X_{0} and X_{1} are connected by a family of smooth hypersurfaces X_{t} with Fubini-Study forms ω_{t}. The cohomology class of the symplectic form to X_{t} is Poincaré dual to a hyperplane section (since the Fubini-Study form is Poincaré dual to a hyperplane) and therefore lives in $H^{2}\left(X_{t} ; \mathbb{Z}\right)$. By Ehresman's fibration theorem we know that there is a family of diffeomorphisms $\phi_{t}: X_{0} \rightarrow X_{t}$ and $\phi_{t}^{*}\left[\omega_{t}\right]=\left[\omega_{0}\right]$ (the point is that the cohomology class cannot jump because it lives in the integer lattice). Moser's theorem now tells us that there is a family of symplectomorphisms $\psi_{t}:\left(X_{0}, \omega_{0}\right) \rightarrow\left(X_{t}, \omega_{t}\right)$.

$d=2:$ Quadric surfaces

A quadric hypersurface is defined by a homogeneous quadratic form in $n+1$ variables. Note that diagonalising a nonsingular quadratic form over \mathbb{C} is equivalent to finding a system of coordinates $\left(x_{0}, \ldots, x_{n}\right)$ on \mathbb{C}^{n+1} in which the quadratic form is

$$
x_{0}^{2}+\cdots+x_{n}^{2}
$$

Since we can always diagonalise over \mathbb{C}, we know that any smooth quadric surface is biholomorphic to this one. Since the change of coordinates involved in diagonalisation is linear, the biholomorphism is precisely a projective linear map in $\mathbb{P} G L(n+1, \mathbb{C})$.

Lemma

The smooth quadric surface in $\mathbb{C P}^{3}$ is biholomorphic to $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$.

Proof.

Define the Segre embedding

$$
\mathbb{C P}^{1} \times \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{3}
$$

by sending

$$
([x: y],[a: b]) \rightarrow[x a: y a: x b: y b]=\left[z_{0}: z_{1}: z_{2}: z_{3}\right]
$$

The image of this embedding satisfies $z_{0} z_{3}-z_{1} z_{2}=0$ which is smooth quadric surface. Under this embedding notice that the diagonal $[x: y]=[a: b]$ goes to the hyperplane section $z_{1}=z_{2}$.

We now want to understand the symplectic form given by restricting the Fubini-Study form to the Segre surface. First notice that the ambient isometry $\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \mapsto\left[z_{0}: z_{2}: z_{1}: z_{3}\right]$ swaps the two $\mathbb{C P}^{1}$ factors so they have the same area. Second notice that they are everywhere ω-orthogonal (which for J-complex submanifolds where the complex structure is ω-compatible amounts to the same as being g-orthogonal where $g(\cdot, \cdot)=\omega(\cdot, J \cdot))$.

Exercise

\bigcirc : Show there is an ambient group $G \subset \mathbb{P} G L(4, \mathbb{C})$ of Fubini-Study isometries of $\mathbb{C P}^{3}$ preserving and acting transitively on Q. It therefore suffices to check orthogonality of the lines at a single point. Do so.

This tells us that the symplectic form is precisely $\omega_{\mathbb{C P}^{1}} \oplus \omega_{\mathbb{C P}^{1}}$.

This figures with our calculation of the Chern classes last week. To see this, we know that $c_{1}\left(T \mathbb{C P}^{1}\right)=2\left[\omega_{\mathbb{C P}^{1}}\right]$ and we can pullback $T \mathbb{C P}^{1}$ from the projection to each factor and take the direct sum to get $T\left(\mathbb{C P}^{1} \times \mathbb{C P}^{1}\right)$. The formula for c_{1} under direct sum implies $c_{1}\left(\mathbb{C P}^{1} \times \mathbb{C P}^{1}\right)=2\left[\omega_{\mathbb{C P}^{1}} \oplus \omega_{\mathbb{C P}^{1}}\right]$. But our formula for the first Chern class of a hypersurface gives

$$
c_{1}(Q)=(3+1-2)\left[\omega_{F S}\right]=2\left[\omega_{F S}\right]
$$

Since h is a hyperplane section of Q and we know that the diagonal $\Delta \subset \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ is a hyperplane section we know that the first Chern class is Poincaré dual to 2Δ, or by the first picture we know it's Poincaré dual to $\left(\{0, \infty\} \times \mathbb{C P}^{1}\right) \cup\left(\mathbb{C P}^{1} \times\{0, \infty\}\right)$.

Also, we know that $c_{2}(T Q)$ is the Euler characteristic of Q - the vanishing locus of a single section (since $T Q$ is a rank 2 complex vector bundle) and we found that

$$
\binom{4}{2} h^{2}=c_{2}(Q)+2 h c_{1}(Q)
$$

so $c_{2}(Q)=2 h^{2}$. But remember h is a hyperplane section of Q so h^{2} is a line section of Q. How many points is that? A line intersects a quadric in two points. So we get $c_{2}(Q)=4$. But that's the Euler characteristic of $S^{2} \times S^{2}$.

To understand the geometry of a quadric, notice that the real locus of

$$
-x_{0}^{2}+x_{1}^{2}+\cdots+x_{n}^{2}=0
$$

is a Lagrangian $n-1$-sphere. The complement retracts onto the divisor at infinity $x_{0}=0$ which is again a quadric. For example, the antidiagonal sphere in $S^{2} \times S^{2}$ and the diagonal sphere.

Exercise

© : Identify the affine quadric (i.e. $x_{1}^{2}+\cdots+x_{n}^{2}=1$) with $T^{*} S^{n}$ smoothly. Prove that they are symplectomorphic.

I could go on about quadrics all day. Instead I refer you to Chapter 6 of Griffiths and Harris or the whole of Harris's "Algebraic Geometry: A First Course" (in particular Lecture 22).

Cubic surfaces

We recall that cubic surfaces C are Fano $\left(c_{1}=h=\left[\omega_{F S}\right]\right)$. We can also calculate their Euler characteristic using our knowledge of c_{2} and we find $c_{2}=3 h^{2}$ but h^{2} is now a line section of a cubic surface, which is three points, so the Euler characteristic is 9 . Note that a hyperplane section is a cubic curve in the hyperplane, so it has genus 1 .
Let's try and see what the topology of C is. We will fix a particular cubic for convenience, the Fermat cubic

$$
C=\left\{z_{0}^{3}+z_{1}^{3}+z_{2}^{3}+z_{4}^{3}=0\right\}
$$

First notice that this is a very symmetric variety. One can multiply any coordinate by a cube-root of 1 or one can permute the coordinates and one obtains a large group G of automorphisms (in fact, Fubini-Study isometries).

Next notice that C contains a line.

$$
\wedge: \mathbb{C P}^{1} \ni[\sigma: \tau] \mapsto[\sigma: \tau:-\sigma:-\tau] \in C
$$

Acting by G gives more lines.

Exercise

\diamond : In fact it gives 27 lines.
Consider Λ and $\Lambda^{\prime}=\{[\sigma: \tau:-\omega \sigma:-\omega \tau]\}$ for $\omega=e^{2 \pi i / 3}$. These are disjoint lines contained in C.

Any point $p \in C \backslash\left(\Lambda \cup \Lambda^{\prime}\right)$ lies on a unique line connecting Λ and Λ^{\prime}. Define $\left(\lambda(p), \lambda^{\prime}(p)\right) \in \Lambda \times \Lambda^{\prime}$ to be the intersections of this line with Λ and Λ^{\prime}.

Proposition

The map

$$
\lambda \times \lambda^{\prime}: C \backslash\left(\Lambda \cup \Lambda^{\prime}\right) \rightarrow \mathbb{C P}^{1} \times \mathbb{C P}^{1}
$$

extends to the whole of C.

Proof.

To extend the map λ^{\prime} to the whole of $C \backslash \Lambda^{\prime}$, note that $\lambda^{\prime}(p)$ is the intersection point between the hyperplane spanned by p and Λ with the line Λ^{\prime}. As $p_{i} \rightarrow q \in \Lambda$ the hyperplane spanned by p_{i} and Λ tends to $T_{q} C$. So define $\lambda^{\prime}(q)=T_{q} C \cap \Lambda^{\prime}$ and set $\lambda(q)=q \in \Lambda$. Similarly one can extend the map to Λ^{\prime}.

However, the map is not an isomorphism. It's certainly true that for a generic point $\left(\ell, \ell^{\prime}\right) \in \Lambda \times \Lambda^{\prime}$ the line between them intersects C in a single point (because C is cubic and it already intersects C at ℓ and at ℓ^{\prime}). However, it's also possible for the whole line between ℓ and ℓ^{\prime} to be contained in C! Such lines will be contracted down to points in $\Lambda \times \Lambda^{\prime}$ under $\lambda \times \lambda^{\prime}$.

Exercise

\bigcirc : There are five such lines.
This strange phenomenon of contracting lines is called blowing-down. The reverse process is called blowing-up. It works also in the symplectic world and is incredibly useful.

Blowing-up

Here is the simplest example of blowing-up. Consider the subvariety

$$
\tilde{\mathbb{C}}^{2}=\left\{((x, y):[x: y]) \in \mathbb{C}^{2} \times \mathbb{C P}^{1}\right\}
$$

This has a projection π down to \mathbb{C}^{2} and over every point except the origin there is a unique point in $\tilde{\mathbb{C}}^{2}$ corresponding to the unique line through 0 and (x, y). Over the origin the definition we've written doesn't even make sense because $[0: 0]$ isn't a well-defined object. What we actually mean by the definition is to take the closure of $\left\{((x, y),[x: y]) \in \mathbb{C}^{2} \backslash\{0\} \times \mathbb{C P}^{1}\right\}$ inside the bigger space. For any point $[a: b] \in \mathbb{C P}^{1}$ there is a sequence of points $(\lambda a, \lambda b) \in \mathbb{C}^{2}$ whose π-preimages tend (as $\lambda \rightarrow 0$) to the point $((0,0),[a: b])$. So the whole complex line over 0 gets contracted down to a point. This is the local model for what is happening in the cubic surface.

Blowing up a point therefore amounts to replacing that point by the space of all the complex lines passing through it. We call the $\mathbb{C P}^{1}$ which is introduced the exceptional divisor and usually denote it by E. Notice that by definition the normal bundle to E is the tautological bundle of complex lines over $\mathbb{C P}^{1}$ whose first Chern class is $-H$ (H is now just a point in $\mathbb{C P}^{1}$). One way to see this is to observe that the projection $\tilde{\mathbb{C}}^{2} \rightarrow \mathbb{C P}^{1}$ is precisely the normal bundle to E (identifying E with $\mathbb{C P}^{1}$ in the obvious way). We have managed to separate the lines passing through 0 (and hence all intersecting) into a bundle of disjoint lines at the expense of introducing E, a complex curve with self-intersection -1 which all the lines intersect.

This motivates the following definition:

Definition (Proper transform)

If Σ is a curve in \mathbb{C}^{2} passing through the origin then the proper transform $\tilde{\Sigma}$ is the closure of $\pi^{-1}(\Sigma \backslash\{0\})$.

The canonical example is just taking Σ to be a line through 0 . It's easy to see that if Σ is smooth at the origin with complex tangent line $[a: b]$ then the proper transform is $\pi^{-1}(\Sigma \backslash\{0\}) \cup\{[a: b]\}$. If Σ is immersed and its branched approach from different directions then $\tilde{\Sigma}$ is actually embedded. We will write $[\Sigma]$ for the homology class represented by $\pi^{-1}(\Sigma)=\tilde{\Sigma} \cup E$ and notice that $[\tilde{\Sigma}]=[\Sigma]-[E]$.

Of course since we have only changed things at the centre of some coordinate patch we can perform this operation locally in any complex surface (simply replacing a coordinate patch isomorphic to \mathbb{C}^{2} by $\tilde{\mathbb{C}}^{2}$). For example, take $\mathbb{C P}^{2}$ and blow-up the origin. The lines through 0 in $\mathbb{C P}^{2}$ intersect only at 0 , so in $\widetilde{\mathbb{C P}}^{2}$ their proper transforms do not intersect at all, so we have exhibited $\widetilde{\mathbb{C P}}^{2}$ as a $\mathbb{C P}^{1}$-bundle over $\mathbb{C P}^{1}$. Note that there are no - 1 -curves in $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$ so this is a nontrivial bundle (because the exceptional curve is a -1-curve. Indeed it is a section).

What does blow-up do topologically? It's easy to check (via Van Kampen's theorem) that the fundamental group is unchanged. Cohomologically it just adds another generator to H^{2} (the class [E] - by Mayer-Vietoris). How about the Chern class?

Lemma

The first Chern class of the blow-up \tilde{X} of a complex surface X is $\pi^{*} c_{1}(X)-[E]$.

Proof.

We need to understand how $c_{1}(\tilde{X})$ acts on $H_{2}(\tilde{X} ; \mathbb{Z})=H_{2}(X ; \mathbb{Z}) \oplus \mathbb{Z}[E]$. Since the first Chern class is Poincaré dual to a codimension 2 homology class and since the blow-up locus has codimension 4 we know that $c_{1}(\tilde{X})$ acts as $c_{1}(X)$ on $H_{2}(X ; \mathbb{Z}) \subset H_{2}(\tilde{X} ; \mathbb{Z})$. The only question is how it evaluates on E. By adjunction we know that $c_{1}(\tilde{X})([E])=c_{1}(E)+c_{1}(\nu E)$ and we observed that $\nu E=\mathcal{O}(-1)$. Since $c_{1}(E)=2$ and $c_{1}(\mathcal{O}(-1))=-1$ we get $c_{1}(\tilde{X})([E])=1$. But by Poincaré duality there is a unique homology class which intersects E with multiplicity 1 and doesn't intersect any class in $H_{2}(X ; \mathbb{Z})$, and that's $-[E]$.

Here's another example. Consider the quadric surface Q and take a point $p \in Q$. Most lines through p intersect Q in exactly one other point (because Q has degree 2) but there are two such lines $\Lambda, \Lambda^{\prime}$ (the components of the intersection $T_{p} Q \cap Q$, or the factors of $\left.\mathbb{C P}^{1} \times \mathbb{C P}^{1}\right)$ which are contained in Q. On the complement of these lines there is a well-defined projection map $\phi: Q \backslash\left(\Lambda \cup \Lambda^{\prime}\right) \rightarrow \mathbb{C P}^{2}$ (where $\mathbb{C P}^{2}$ is the space of lines through p in $\mathbb{C P}^{3}$). The image of ϕ misses out the line in $\mathbb{C P}^{2}$ corresponding to lines contained in the hyperplane $T_{p} Q$. We want to extend the domain of definition of ϕ to the whole of Q, but we don't know where to send p (it should go to both points q and q^{\prime} corresponding to the directions Λ and Λ^{\prime}). The solution is to blow-up Q at p. Now the proper transforms of Λ and Λ^{\prime} and we have introduced precisely the right amount of space ($a \mathbb{C P}^{1}$) to fill in the missing line from $\mathbb{C P}^{2}$. The preimage of q and q^{\prime} under the extended map $\tilde{\phi}$ consists of the proper transforms of Λ and Λ^{\prime}. Every other point has a unique preimage. So we have exhibited \tilde{Q} as biholomorphic to the blow-up of $\mathbb{C P}^{2}$ at two points (q and q^{\prime})!

To make rigorous sense of what l've just said you should consider the graph of the map $Q \backslash\left(\Lambda \cup \Lambda^{\prime}\right) \rightarrow \mathbb{C P}^{2}$ inside $Q \times \mathbb{C P}^{2}$ and take its closure. The result has a projection to Q (which collapses a single exceptional curve to the point p) and a projection to $\mathbb{C P}^{2}$ (which collapses $\tilde{\Lambda}$ and $\tilde{\Lambda}^{\prime}$ to q and q^{\prime} respectively.
In particular we see that the blow-up of Q at one point is the same as the blow-up of $\mathbb{C P}^{2}$ at two points. Since the group of automorphisms of $\mathbb{C P}^{2}$ acts 2-transitively on $\mathbb{C P}^{2}$ we can say things like that without specifying which points we're blowing up. Notice that before we exhibited the Fermat cubic surface as the blow-up of Q at five points. We see now the (possibly more familiar) description of a cubic surface as the blow-up of $\mathbb{C P}^{2}$ at six points. But the group of automorphisms of $\mathbb{C P}^{2}$ doesn't act 6 -transitively so now it does matter which six points we blow-up.

It turns out that any cubic surface occurs as a 6 -point blow-up of $\mathbb{C P}^{2}$. For a proof see Griffiths and Harris, but to make it plausible notice that there are 20 cubic monomials in four variables (so $\operatorname{dim}_{\mathbb{C}} \mathbb{P} V_{3}=19$) and $\mathbb{P} G L(4, \mathbb{C})$ has complex dimension 15 (4-by-4 minus 1 for the \mathbb{P}) so the space of cubic surfaces up to automorphism is 4 complex dimensional. But $\mathbb{P} G L(3, \mathbb{C})$ acts 4 -transitively on $\mathbb{C P}^{2}$ so you can generically fix four of the six blow-up points to be $[1: 0: 0],[0: 1: 0],[0: 0: 1],[1: 1: 1]$ and you have two left which each contribute 2 complex dimensions, giving 4 . Not every collection of 6 points work.

Lemma

In order for a given collection of 6 points to give a blow-up embeddable as a smooth cubic surface in $\mathbb{C P}^{3}$, no three points can lie on a line and no six can lie on a conic.

Proof: Collinear case.

Suppose three of the points lie on a line Σ and let Σ be the proper transform. Since the blow-up is assumed to embed as a complex submanifold of $\mathbb{C P}^{3}$ this proper transform is a symplectic submanifold and hence the Fubini-Study form gives it nonzero area. But E_{1}, E_{2}, E_{3} (the exceptional curves of the three blow-up points on Σ) are also symplectic and hence have positive area (at least 1 , the minimal area of a line in $\mathbb{C P}^{3}$).
But we know that a cubic surface is Fano, so the Fubini-Study form equals the first Chern class $c_{1}\left(\mathbb{C P}^{2}\right)-\left[E_{1}\right]-\cdots-\left[E_{6}\right]$. Since $c_{1}\left(\mathbb{C P}^{2}\right)([\Sigma])=3$, we get

$$
\omega(\tilde{\Sigma})=c_{1} \cdot[\tilde{\Sigma}]=0
$$

a contradiction. A similar argument works for the conic.

In fact that's the only condition on the points and any six points no three of which are collinear and no six of which lie on a conic can be blown up to obtain a cubic surface (see Griffiths and Harris).

Coming up in the next couple of weeks:

- Symplectic blow-up,
- Lefschetz hyperplane theorem, Lefschetz pencils,
- Vanishing cycles and monodromy.

