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Last lecture we defined a Kähler symplectic structure (the Fubini-Study
form ωFS) on CPn and this enabled us to write down some examples of
symplectic manifolds (complex subvarieties of CPn). We investigated
hypersurfaces more thoroughly and found that their Chern classes are
given by the following formula(

n + 1

k

)
hk = ck(Σ) + dh ∪ ck−1(Σ)

where Σ is a hypersurface of degree d . Here h is the cohomology class in
Σ Poincaré dual to a hyperplane section Σ ∩ H. Since the Fubini-Study
form has cohomology class H its restriction to Σ has cohomology class h.
We finished by observing the special case

c1(Σ) = (n + 1− d)[ωFS ]

which implies a trichotomy: d < n + 1, d = n + 1, d > n + 1 between
symplectic Fano, symplectic Calabi-Yau and symplectic general type
hypersurfaces. Note that the Chern class calculations hold true for any real
codimension 2 symplectic submanifold of CPn with homology class dH.
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Today we will explore the topology of hypersurfaces further. Why?

Because for me they’re the symplectic manifolds which form the basis
of my intuition,

Because it’s easy to describe some of their symplectic submanifolds
(their own hyperplane sections),

Because they admit many interesting Lagrangian submanifolds (some
of which we have already met: their real loci; some of which we will
meet in a couple of lecture’s time: their vanishing cycles).

Because they exhibit many interesting features which generalise to
other (non-projective) symplectic manifolds, for example the blow-up
construction we’ll see later in this lecture has an analogue in the
symplectic world.

Since much work in symplectic topology has focused on 4-dimensional
symplectic manifolds, we will emphasise the case of complex surfaces in
CP3.
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We begin by noticing that...

Proposition

If X0 and X1 are projective hypersurfaces of the same dimension and the
same degree then they are symplectomorphic.

Proof.

We know that the space of singular hypersurfaces has complex
codimension one in PVd so X0 and X1 are connected by a family of
smooth hypersurfaces Xt with Fubini-Study forms ωt . The cohomology
class of the symplectic form to Xt is Poincaré dual to a hyperplane section
(since the Fubini-Study form is Poincaré dual to a hyperplane) and
therefore lives in H2(Xt ;Z). By Ehresman’s fibration theorem we know
that there is a family of diffeomorphisms φt : X0 → Xt and φ∗t [ωt ] = [ω0]
(the point is that the cohomology class cannot jump because it lives in the
integer lattice). Moser’s theorem now tells us that there is a family of
symplectomorphisms ψt : (X0, ω0)→ (Xt , ωt).
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d = 2: Quadric surfaces

A quadric hypersurface is defined by a homogeneous quadratic form in
n + 1 variables. Note that diagonalising a nonsingular quadratic form over
C is equivalent to finding a system of coordinates (x0, . . . , xn) on Cn+1 in
which the quadratic form is

x2
0 + · · ·+ x2

n

Since we can always diagonalise over C, we know that any smooth quadric
surface is biholomorphic to this one. Since the change of coordinates
involved in diagonalisation is linear, the biholomorphism is precisely a
projective linear map in PGL(n + 1,C).
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Lemma

The smooth quadric surface in CP3 is biholomorphic to CP1 × CP1.

Proof.

Define the Segre embedding

CP1 × CP1 → CP3

by sending

([x : y ], [a : b])→ [xa : ya : xb : yb] = [z0 : z1 : z2 : z3]

The image of this embedding satisfies z0z3 − z1z2 = 0 which is smooth
quadric surface. Under this embedding notice that the diagonal
[x : y ] = [a : b] goes to the hyperplane section z1 = z2.
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We now want to understand the symplectic form given by restricting the
Fubini-Study form to the Segre surface. First notice that the ambient
isometry [z0 : z1 : z2 : z3] 7→ [z0 : z2 : z1 : z3] swaps the two CP1 factors so
they have the same area. Second notice that they are everywhere
ω-orthogonal (which for J-complex submanifolds where the complex
structure is ω-compatible amounts to the same as being g -orthogonal
where g(·, ·) = ω(·, J·)).

Exercise

♥ : Show there is an ambient group G ⊂ PGL(4,C) of Fubini-Study
isometries of CP3 preserving and acting transitively on Q. It therefore
suffices to check orthogonality of the lines at a single point. Do so.

This tells us that the symplectic form is precisely ωCP1 ⊕ ωCP1 .
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This figures with our calculation of the Chern classes last week. To see
this, we know that c1(TCP1) = 2[ωCP1 ] and we can pullback TCP1 from
the projection to each factor and take the direct sum to get
T (CP1 × CP1). The formula for c1 under direct sum implies
c1(CP1 × CP1) = 2[ωCP1 ⊕ ωCP1 ]. But our formula for the first Chern
class of a hypersurface gives

c1(Q) = (3 + 1− 2)[ωFS ] = 2[ωFS ]

Since h is a hyperplane section of Q and we know that the diagonal
∆ ⊂ CP1 ×CP1 is a hyperplane section we know that the first Chern class
is Poincaré dual to 2∆, or by the first picture we know it’s Poincaré dual
to ({0,∞}× CP1) ∪ (CP1 × {0,∞}).
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Also, we know that c2(TQ) is the Euler characteristic of Q - the vanishing
locus of a single section (since TQ is a rank 2 complex vector bundle) and
we found that (

4

2

)
h2 = c2(Q) + 2hc1(Q)

so c2(Q) = 2h2. But remember h is a hyperplane section of Q so h2 is a
line section of Q. How many points is that? A line intersects a quadric in
two points. So we get c2(Q) = 4. But that’s the Euler characteristic of
S2 × S2.
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To understand the geometry of a quadric, notice that the real locus of

−x2
0 + x2

1 + · · ·+ x2
n = 0

is a Lagrangian n − 1-sphere. The complement retracts onto the divisor at
infinity x0 = 0 which is again a quadric. For example, the antidiagonal
sphere in S2 × S2 and the diagonal sphere.

Exercise

♠ : Identify the affine quadric (i.e. x2
1 + · · ·+ x2

n = 1) with T ∗Sn

smoothly. Prove that they are symplectomorphic.

I could go on about quadrics all day. Instead I refer you to Chapter 6 of
Griffiths and Harris or the whole of Harris’s “Algebraic Geometry: A First
Course” (in particular Lecture 22).
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Cubic surfaces

We recall that cubic surfaces C are Fano (c1 = h = [ωFS ]). We can also
calculate their Euler characteristic using our knowledge of c2 and we find
c2 = 3h2 but h2 is now a line section of a cubic surface, which is three
points, so the Euler characteristic is 9. Note that a hyperplane section is a
cubic curve in the hyperplane, so it has genus 1.
Let’s try and see what the topology of C is. We will fix a particular cubic
for convenience, the Fermat cubic

C = {z3
0 + z3

1 + z3
2 + z3

4 = 0}

First notice that this is a very symmetric variety. One can multiply any
coordinate by a cube-root of 1 or one can permute the coordinates and
one obtains a large group G of automorphisms (in fact, Fubini-Study
isometries).
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Next notice that C contains a line.

Λ : CP1 3 [σ : τ ] 7→ [σ : τ : −σ : −τ ] ∈ C

Acting by G gives more lines.

Exercise

♦ : In fact it gives 27 lines.

Consider Λ and Λ′ = {[σ : τ : −ωσ : −ωτ ]} for ω = e2πi/3. These are
disjoint lines contained in C .
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Any point p ∈ C \ (Λ ∪ Λ′) lies on a unique line connecting Λ and Λ′.
Define (λ(p), λ′(p)) ∈ Λ× Λ′ to be the intersections of this line with Λ
and Λ′.

Proposition

The map
λ× λ′ : C \ (Λ ∪ Λ′)→ CP1 × CP1

extends to the whole of C .

Proof.

To extend the map λ′ to the whole of C \ Λ′, note that λ′(p) is the
intersection point between the hyperplane spanned by p and Λ with the
line Λ′. As pi → q ∈ Λ the hyperplane spanned by pi and Λ tends to TqC .
So define λ′(q) = TqC ∩ Λ′ and set λ(q) = q ∈ Λ. Similarly one can
extend the map to Λ′.
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However, the map is not an isomorphism. It’s certainly true that for a
generic point (`, `′) ∈ Λ× Λ′ the line between them intersects C in a single
point (because C is cubic and it already intersects C at ` and at `′).
However, it’s also possible for the whole line between ` and `′ to be
contained in C ! Such lines will be contracted down to points in Λ× Λ′

under λ× λ′.

Exercise

♥ : There are five such lines.

This strange phenomenon of contracting lines is called blowing-down. The
reverse process is called blowing-up. It works also in the symplectic world
and is incredibly useful.
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Blowing-up

Here is the simplest example of blowing-up. Consider the subvariety

C̃2 = {((x , y) : [x : y ]) ∈ C2 × CP1}

This has a projection π down to C2 and over every point except the origin
there is a unique point in C̃2 corresponding to the unique line through 0
and (x , y). Over the origin the definition we’ve written doesn’t even make
sense because [0 : 0] isn’t a well-defined object. What we actually mean by
the definition is to take the closure of {((x , y), [x : y ]) ∈ C2 \ {0} × CP1}
inside the bigger space. For any point [a : b] ∈ CP1 there is a sequence of
points (λa, λb) ∈ C2 whose π-preimages tend (as λ→ 0) to the point
((0, 0), [a : b]). So the whole complex line over 0 gets contracted down to
a point. This is the local model for what is happening in the cubic surface.
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Blowing up a point therefore amounts to replacing that point by the space
of all the complex lines passing through it. We call the CP1 which is
introduced the exceptional divisor and usually denote it by E . Notice that
by definition the normal bundle to E is the tautological bundle of complex
lines over CP1 whose first Chern class is −H (H is now just a point in
CP1). One way to see this is to observe that the projection C̃2 → CP1 is
precisely the normal bundle to E (identifying E with CP1 in the obvious
way). We have managed to separate the lines passing through 0 (and
hence all intersecting) into a bundle of disjoint lines at the expense of
introducing E , a complex curve with self-intersection -1 which all the lines
intersect.
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This motivates the following definition:

Definition (Proper transform)

If Σ is a curve in C2 passing through the origin then the proper transform
Σ̃ is the closure of π−1(Σ \ {0}).

The canonical example is just taking Σ to be a line through 0. It’s easy to
see that if Σ is smooth at the origin with complex tangent line [a : b] then
the proper transform is π−1(Σ \ {0}) ∪ {[a : b]}. If Σ is immersed and its
branched approach from different directions then Σ̃ is actually embedded.
We will write [Σ] for the homology class represented by π−1(Σ) = Σ̃ ∪ E
and notice that [Σ̃] = [Σ]− [E ].
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Of course since we have only changed things at the centre of some
coordinate patch we can perform this operation locally in any complex
surface (simply replacing a coordinate patch isomorphic to C2 by C̃2). For
example, take CP2 and blow-up the origin. The lines through 0 in CP2

intersect only at 0, so in C̃P
2

their proper transforms do not intersect at

all, so we have exhibited C̃P
2

as a CP1-bundle over CP1. Note that there
are no −1-curves in CP1 × CP1 so this is a nontrivial bundle (because the
exceptional curve is a -1-curve. Indeed it is a section).
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What does blow-up do topologically? It’s easy to check (via Van
Kampen’s theorem) that the fundamental group is unchanged.
Cohomologically it just adds another generator to H2 (the class [E ] - by
Mayer-Vietoris). How about the Chern class?

Lemma

The first Chern class of the blow-up X̃ of a complex surface X is
π∗c1(X )− [E ].

Proof.

We need to understand how c1(X̃ ) acts on H2(X̃ ;Z) = H2(X ;Z)⊕ Z[E ].
Since the first Chern class is Poincaré dual to a codimension 2 homology
class and since the blow-up locus has codimension 4 we know that c1(X̃ )
acts as c1(X ) on H2(X ;Z) ⊂ H2(X̃ ;Z). The only question is how it
evaluates on E . By adjunction we know that c1(X̃ )([E ]) = c1(E ) + c1(νE )
and we observed that νE = O(−1). Since c1(E ) = 2 and
c1(O(−1)) = −1 we get c1(X̃ )([E ]) = 1. But by Poincaré duality there is
a unique homology class which intersects E with multiplicity 1 and doesn’t
intersect any class in H2(X ;Z), and that’s −[E ].
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Here’s another example. Consider the quadric surface Q and take a point
p ∈ Q. Most lines through p intersect Q in exactly one other point
(because Q has degree 2) but there are two such lines Λ, Λ′ (the
components of the intersection TpQ ∩ Q, or the factors of CP1 × CP1)
which are contained in Q. On the complement of these lines there is a
well-defined projection map φ : Q \ (Λ ∪ Λ′)→ CP2 (where CP2 is the
space of lines through p in CP3). The image of φ misses out the line in
CP2 corresponding to lines contained in the hyperplane TpQ.
We want to extend the domain of definition of φ to the whole of Q, but
we don’t know where to send p (it should go to both points q and q′

corresponding to the directions Λ and Λ′). The solution is to blow-up Q at
p. Now the proper transforms of Λ and Λ′ and we have introduced
precisely the right amount of space (a CP1) to fill in the missing line from
CP2. The preimage of q and q′ under the extended map φ̃ consists of the
proper transforms of Λ and Λ′. Every other point has a unique preimage.
So we have exhibited Q̃ as biholomorphic to the blow-up of CP2 at two
points (q and q′)!
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To make rigorous sense of what I’ve just said you should consider the
graph of the map Q \ (Λ∪ Λ′)→ CP2 inside Q ×CP2 and take its closure.
The result has a projection to Q (which collapses a single exceptional
curve to the point p) and a projection to CP2 (which collapses Λ̃ and Λ̃′ to
q and q′ respectively.
In particular we see that the blow-up of Q at one point is the same as the
blow-up of CP2 at two points. Since the group of automorphisms of CP2

acts 2-transitively on CP2 we can say things like that without specifying
which points we’re blowing up. Notice that before we exhibited the
Fermat cubic surface as the blow-up of Q at five points. We see now the
(possibly more familiar) description of a cubic surface as the blow-up of
CP2 at six points. But the group of automorphisms of CP2 doesn’t act
6-transitively so now it does matter which six points we blow-up.
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It turns out that any cubic surface occurs as a 6-point blow-up of CP2.
For a proof see Griffiths and Harris, but to make it plausible notice that
there are 20 cubic monomials in four variables (so dimC PV3 = 19) and
PGL(4,C) has complex dimension 15 (4-by-4 minus 1 for the P) so the
space of cubic surfaces up to automorphism is 4 complex dimensional. But
PGL(3,C) acts 4-transitively on CP2 so you can generically fix four of the
six blow-up points to be [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1] and you
have two left which each contribute 2 complex dimensions, giving 4.
Not every collection of 6 points work.
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Lemma

In order for a given collection of 6 points to give a blow-up embeddable as
a smooth cubic surface in CP3, no three points can lie on a line and no six
can lie on a conic.

Proof: Collinear case.

Suppose three of the points lie on a line Σ and let Σ̃ be the proper
transform. Since the blow-up is assumed to embed as a complex
submanifold of CP3 this proper transform is a symplectic submanifold and
hence the Fubini-Study form gives it nonzero area. But E1, E2, E3 (the
exceptional curves of the three blow-up points on Σ) are also symplectic
and hence have positive area (at least 1, the minimal area of a line in
CP3).
But we know that a cubic surface is Fano, so the Fubini-Study form equals
the first Chern class c1(CP2)− [E1]− · · · − [E6]. Since c1(CP2)([Σ]) = 3,
we get

ω(Σ̃) = c1 · [Σ̃] = 0

a contradiction. A similar argument works for the conic.
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In fact that’s the only condition on the points and any six points no three
of which are collinear and no six of which lie on a conic can be blown up
to obtain a cubic surface (see Griffiths and Harris).
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Coming up in the next couple of weeks:

Symplectic blow-up,

Lefschetz hyperplane theorem, Lefschetz pencils,

Vanishing cycles and monodromy.
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