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I will begin by proving the adjunction formula which we still haven’t
managed yet. We’ll then talk about complex projective space CPn, give it
a symplectic structure (the Fubini-Study form) and construct a huge
variety of examples (if you’ll excuse the pun) as smooth subvarieties of
CPn. We’ll apply the adjunction formula to calculate the Chern classes of
hypersurfaces.
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Recall from last time:

To a complex or symplectic vector bundle E → X you can assign
Chern classes ci (E ) ∈ H2i (X ;Z).

The Chern character is this bizarre-looking expression

c(E ) = 1 + c1(E ) + c2(E ) + · · ·+ cn(E )

where n is the rank of E and where this sum is just an inhomogeneous
element in the cohomology ring H∗(X ;Z) =

⊕
k Hk(X ;Z).

If 0→ A→ E → B → 0 is an exact sequence of complex or
symplectic vector bundles then c(A) ∪ c(B) = c(E ) where ∪ denotes
cup product in the cohomology ring (Poincaré dual to intersection
product in homology).

For simplicity we’ll always use the word “complex”, but you can
everywhere replace it by “symplectic”.
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If Σ ⊂ X is a complex submanifold of a complex manifold X then we have
three natural complex vector bundles on Σ:

The tangent bundle of Σ, T Σ,

The restriction of TX to Σ, TX |Σ,

The normal bundle of Σ, νΣ, which is just defined as the quotient of
TX |Σ by the complex subbundle T Σ. That is we have an exact
sequence:

0→ T Σ→ TX |Σ → νΣ→ 0
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Since the Chern character is multiplicative in exact sequences this means

c(T Σ) ∪ c(νΣ) = c(TX |Σ)

Comparing terms order by order in the cohomology ring:

c1(T Σ) + c1(νΣ) = c1(TX |Σ)

c2(T Σ) + c1(T Σ) ∪ c1(νΣ) + c2(νΣ) = c2(TX |Σ)

...

In the following setting, the first formula reduces to:

Corollary

Assume C ⊂ X is a complex curve in a complex surface. Then
χ(C )P.D.(pt) + [C ] · [C ] = P.D.(c1(X )) · [C ].

Here χ is the Euler characteristic, [C ] · [C ] is the homological
self-intersection of C in X , c1(X ) := c1(TX ) and P.D. denotes the
Poincaré dual.
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Proof.

Note that TC and νC are both 1-dimensional complex vector bundles
(complex line bundles). The first Chern class of a complex line bundle
is Poincaré dual to the vanishing locus of a generic section. For the
tangent bundle, this is just the vanishing locus of a vector field, so it’s
χ(C ) points. For the normal bundle it’s the intersection of C with a
pushoff of itself, i.e. the homological self-intersection. We only need
to compute c1(TX |C ).

TX |C is a rank 2 complex vector bundle. To compute its first Chern
class, take two sections σ1, σ2 and find their degeneracy locus.
Extend these sections in a generic way over the whole of X . Then the
degeneracy locus of the extended sections is Poincaré dual to the first
Chern class of TX and we’re just intersecting it with C to find the
degeneracy locus of the restricted sections. This gives the right-hand
side of the formula.
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As we will see later in the lecture, c1(TCP2) = 3P.D.(H) where H is the
homology class of a line. Indeed the homology of CP2 is just
H∗(CP2;Z) = Z⊕ ZH ⊕ ZH2 so for any complex curve there’s an integer
d (its degree) such that C is homologous to dH.

Corollary

The genus of a smooth complex curve of degree d in CP2 is given by the
formula

g =
(d − 1)(d − 2)

2

Proof.

χ(C ) = 2− 2g , [C ] · [C ] = d2H2, P.D.(c1(CP2)) · [C ] = 3dH2. Therefore

2− 2g + d2 = 3d

Let’s look at CPn in a little more detail.
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Complex projective space

CPn is the space of complex lines through the origin in Cn+1. There is a
unique such complex line through any nonzero vector in Cn+1 so CPn can
be topologised as the quotient space (Cn+1 \ {0})/C∗ where λ ∈ C∗ acts
on (z0, . . . , zn) ∈ Cn+1 by diagonal rescaling (λz0, . . . , λzn). We write

[z0 : · · · : zn]

for the orbit of (z0, . . . , zn) under this action and we call these
homogeneous coordinates. We can find a patch Ui in CPn diffeomorphic
to Cn if restrict to the subset where one of the coordinates doesn’t vanish:
zi 6= 0. To define a diffeomorphism with Cn we set

(Z0, . . . , Ẑi , . . . ,Zn) = (z0/zi , . . . , ẑi , . . . , zn/zi )

There are n + 1 such complex patches.
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When these patches (say Y and Z corresponding to zi 6= 0 and zj 6= 0
respectively) overlap we have transition maps

Zk = zk/zj = (zk/zi )(zi/zj) = Yk(zi/zj) (k 6= i , j)

Zi = zi/zj = (zj/zi )
−1 = Y−1

j

which are holomorphic on the overlaps. Therefore CPn has a complex
atlas. We will give it a symplectic form compatible with this complex
structure. But first, let’s work out its homology and the Chern character
of its tangent bundle (completing the proof of the degree-genus formula).
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To compute the cohomology notice that there’s a cell decomposition of
CPn: the patch z0 6= 0 is a 2n-cell which is attached to the CPn−1 at
infinity (z0 = 0). By induction all the cells in this decomposition are even
dimensional and there is precisely one cell in each even dimension.
Therefore since the cellular chain complex computes ordinary cohomology
and since the differentials in the cellular chain complex must vanish (since
they shift degree by one, which is not even) we know that the ordinary
cohomology of CPn is just Z in every even degree. Each generator is just a
cell filling up a subvariety CPk ⊂ CPn so the homology is

Z[pt]⊕ Z[CP1]⊕ · · · ⊕ Z[CPn]

We write H for the homology class CPn−1, then [CPk ] = Hn−k .
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Recall that we calculated the first Chern class of the tautological line
bundle λ of CPn (whose fibre at a point corresponding to a complex line
π ⊂ Cn+1 is the line π). It was −P.D.(H).

Lemma

The tangent bundle of CPn is isomorphic as a complex vector bundle to
Hom(λ, λ⊥) where λ⊥π is the orthogonal complement in Cn+1 of the line
λπ = π.

Proof.

Let π ∈ CPn. Then any line near π is a graph of a linear map π → π⊥.
Therefore the tangent space of CPn at π is Hom(λ, λ⊥).
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Note that Hom(λ, λ) = λ⊗ λ̌ is a trivial complex line bundle (line bundles
under tensor product form an abelian group with L−1 = Ľ). Therefore

TCPn ⊕ C ∼= Hom(λ, λ⊕ λ⊥)

= Hom(λ,C⊕n+1)

∼= Hom(λ,C)⊕n+1

= λ̌⊕n+1

so the multiplicativity of Chern character implies

c(TCPn) ∪ c(C) = c(λ̌)n+1

and since C is trivial and c(λ̌) = 1 + P.D.(H) we get

c(TCPn) = (1 + P.D.(H))n+1

i.e. c1(TCPn) = (n + 1)P.D.(H) and more generally
ck(TCPn) =

(n+1
k

)
P.D.(H)k .
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Chern classes of projective hypersurfaces

A hypersurface in CPn is the zero set of a degree d homogeneous
polynomial (e.g. a complex curve in CP2). Note that homogeneous
polynomials in n + 1 variables are invariant under the diagonal rescaling
action of λ ∈ C∗ so their zero-sets are λ-invariant and descend to subsets
of CPn.
The space of homogeneous polynomials of degree d in n + 1 variables is a
vector space Vd with coordinates απ corresponding to partitions π. Here
π = (π0, . . . , πn) is a partition of n + 1 i.e.

∑n
i=0 πi = n + 1, πi ∈ Z≥0.

The general homogeneous polynomial is∑
π

απxπ0
0 · · · x

πn
n

Of course we are only interested in homogeneous polynomials up to
rescaling (since their zero sets are invariant under rescaling) and we don’t
like the zero polynomial, so the space of hypersurfaces is really P(Vd).

Jonathan Evans () Lecture VI: Projective varieties 28th October 2010 13 / 24



The condition that a hypersurface is smooth is that the polynomial
vanishes transversely, i.e. that ∂P 6= 0 where ∂P is

∑
i ∂P/∂zidzi . This is

a complex polynomial so the condition on the polynomial P to vanish
nontransversely is of codimension 1 in the vector space of polynomials.
Hence the space of smooth hypersurfaces is the complement of a subset
with complex codimension 1 and is therefore connected.
In particular, all projective hypersurfaces of a given degree are
diffeomorphic (by Ehresmann’s fibration theorem). The calculation of
Chern classes we’re going to do is actually valid for any real codimension 2
symplectic hypersurface in the homology class dH: the algebraic ones are
just particularly nice examples. We don’t know that any two symplectic
hypersurfaces of a given degree are connected by a family (or even if
they’re diffeomorphic).
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The normal bundle of a hypersurface Σ is a line bundle (since Σ has
complex codimension 1) therefore c(νΣ) = 1 + c1(νΣ). To compute
c1(νΣ) ∈ H2(Σ;Z) we see that a section of the normal bundle is given by
a nearby hypersurface (i.e. a small perturbation of the polynomial defining
Σ is a section of the normal bundle). Let’s write h for the intersection
H ∩ Σ of Σ with a generic hyperplane (this corresponds to dH2 inside
CPn). Then we get c(νΣ) = 1 + dP.D.(h).
The adjunction formula tells us

(1 + P.D.(h))n+1 = c(TCPn|Σ)

= c(νΣ) ∪ c(T Σ) = (1 + dP.D.(h))(1 + c1(T Σ) + · · · )

so
n+1∑
k=0

(
n + 1

k

)
P.D.(h)k = 1 +

n∑
k=0

(ck+1(Σ) + dP.D.(h)ck(Σ))

.
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Fubini-Study form

We now define a symplectic structure ωFS on CPn. It will have the
following properties:

The cohomology class of ωFS will be P.D.(H).

It will be compatible with the complex structure we defined on CPn.

Suppose ι : Σ→ CPn is a smooth complex submanifold, i.e. the tangent
spaces ι∗T Σ are J-invariant. ι∗ωFS is still closed. J-invariance means that
a vector v ∈ T Σ has another vector Jv ∈ T Σ with which it pairs
nontrivially under ω since ω(v , Jv) 6= 0 by compatibility. Therefore

Lemma

If ι : Σ→ CPn is a smooth complex submanifold then ι∗ωFS is a
symplectic form in the cohomology class h.
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On Cn the standard symplectic structure

ω0 = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

can be written in terms of zk = xk + iyk

ω0 =
i

2
(dz1 ∧ dz̄1 + · · ·+ dzn ∧ dz̄n)

=
i

2
∂∂̄

n∑
i=1

|zi |2

Exercise

♦ : Whenever we have a 2-form of the form
∑

j ,k αjkdzj ∧ dz̄k it is
invariant under the complex structure multiplication by i and conversely.

Therefore locally a symplectic form on Cn compatible with the standard
complex structure can be written as

i

2
∂∂̄f

for some function f .
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Definition

A plurisubharmonic function on Cn is a function f : Cn → R such that

i

2
∂∂̄f

is a nondegenerate 2-form.

Definition

The Fubini-Study form on CPn is defined on each patch zi 6= 0 by the
plurisubharmonic function

fi =
1

π
log(1 +

∑
k 6=i

|Zk |2) =
1

π
(log(

n∑
k=0

|zk |2)− log(|zi |2))
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Exercise

There are a couple of calculations one must perform to check this makes
sense:

That indeed these functions are plurisubharmonic,

That the 2-forms ωi they define on each patch Ui are matched by the
transition functions on overlaps (this is easy).

It might help to notice that fi is invariant under the action of U(n) on Cn:
since U(n) acts transitively on each radius r sphere in Cn this means you
only have to check nondegeneracy at a single point on each sphere.

Another nice property of the Fubini-Study form is that it is actually
invariant under the action of PU(n + 1) on CPn induced by the action of
U(n + 1) on Cn+1. To see this, note that the U(n) which act on each
patch generate the group PU(n + 1).
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In the case when n = 1, in the patch U1 = {z1 6= 0} we have a single
coordinate Z0 and the Fubini-Study form is

i

2π
∂∂̄ log(1 + |Z0|2) =

i

2π
∂

(
Z0

1 + |Z0|2
dZ̄0

)
=

i

2π

(
1

1 + |Z0|2
− |Z0|2

(1 + |Z0|2)2

)
dZ0 ∧ dZ̄0

=
ω0

π(1 + |Z0|2)2

The area of CP1 is therefore∫
C

dx ∧ dy

π(1 + x2 + y 2)2
= 1

Note that under stereographic projection S2 → C the pullback of this
2-form is 1/(4π) of the standard area form.

Jonathan Evans () Lecture VI: Projective varieties 28th October 2010 20 / 24



We have therefore constructed a symplectic form which is compatible with
the standard complex structure and invariant under the action of
PU(n + 1) induced by the action of U(n + 1) on Cn+1. We also promised
that the cohomology class [ωFS ] would be Poincaré dual to H, a
hyperplane. We’ll write H for the Poincaré dual of H. Since the second
cohomology of CPn is generated by the class [H] we know that
[ωFS ] = λ[H] for some λ. Then if L is a complex line, H · L = 1 so the
ω-area of L is ∫

L
ωFS = P.D.(ωFS) · L

= λH · Lλ

so it suffices to find the area of L. Take L to be the complex line given by
varying Z0. But we have already seen that the area of this line is 1.
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Back to hypersurfaces
Now we return to the Chern classes of hypersurfaces. We saw that if Σ has
degree d then c1(Σ) = (n + 1− d)h where h is the pullback of H to Σ.
But that’s just the cohomology class of the pullback ωΣ of ωFS to Σ, so

c1(Σ) = (n + 1− d)[ωΣ]

Definition

A symplectic manifold (X , ω) is called

symplectic Fano (or monotone) if c1(X ) = k[ω] for k > 0,

symplectic Calabi-Yau if c1(X ) = 0,

symplectic general type if c1(X ) = −k[ω] for k > 0.

You can drop the adjective “symplectic” if you’re talking about Kähler
manifolds like hypersurfaces. A hypersurface of degree d in CPn is
therefore Fano/Calabi-Yau/general type if d < n + 1,= n + 1, > n + 1
respectively.
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Let’s get familiar with some 2-complex dimensional smooth hypersurfaces.

The fundamental group of any hypersurface of complex dimension 2
or more is trivial (this is Lefschetz’s hyperplane theorem and we’ll see
it next time).

The hyperplane (d = 1) is just a copy of CP2,

The quadric (d = 2) is unique up to projective transformations of the
ambient CP3: any nondegenerate quadratic homogeneous polynomial
can be diagonalised by a linear change of coordinates, so there is only
one quadric hypersurface in each dimension up to isomorphism of
varieties. The quadric surface Q is actually diffeomorphic to S2 × S2.
To see this, consider a tangent plane to Q: this is a hyperplane in
CP3 and intersects Q in a pair of lines. Consider the bundle over Q
whose fibre at q is two points, one for each line in TqQ ∩Q. This is a
double cover, but π1(Q) is trivial so it’s a trivial double cover, i.e.
Q
∐

Q. That is, the lines come in two distinct types: call them α and
β lines. Now it is clear that every point lies on a unique α line and a
unique β line, so we get a diffeomorphism with S2 × S2.
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We’ll discuss the cubic surface after we’ve talked about blowing-up. The
quartic surface K is our first Calabi-Yau manifold, called a K3 surface.
Let’s compute its cohomology. We know that π1(K ) = 0 by Lefschetz’s
hyperplane theorem. Playing around with the universal coefficients formula
and Poincaré duality you can convince yourself that any simply connected
4-manifold has H1 = H3 = 0 and H2 is torsion-free (try it and see). Since
K is a manifold we know that H0 and H4 are one-dimensional. Adjunction
gives us c2(K ) = 24 and c2 is now the Euler characteristic. Therefore H2

is Z22.
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