
Lecture II: Basics

Jonathan Evans

30th September 2010

Jonathan Evans () Lecture II: Basics 30th September 2010 1 / 42



In this lecture we will cover some very basic material in symplectic
geometry.

First, we will discuss classical Hamiltonian mechanics, reinterpret it in
our symplectic setting and show that it was all worthwhile by defining
cotangent bundles.

Second we will talk about the linear algebra of alternating forms, the
special subspaces we get in a symplectic vector spaces and the
topology of various homogeneous spaces (Lagrangian Grassmannian,
Siegel upper half space) which arise in this context.
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Hamiltonian dynamics

Another motivation for studying symplectic geometry is that it provides a
good setting for talking about classical dynamics.
Let {qj}nj=1 be coordinates in Rn and let vj be the component of velocity
in the qj -direction.
A classical dynamical system can be described by a Lagrangian function

L(q, v , t)

as follows. The Lagrangian defines an action functional

L : Ω(x , y)→ R L(γ) =

∫ 1

0
L(γ, γ̇, t)dt

on the space of paths Ω(x , y) from x to y . The classical motions of the
system are the critical points of this functional, i.e. solutions to the
Euler-Lagrange (E-L) equation

d

dt

(
∂L
∂vj

)
=
∂L
∂qj
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This is a system of second-order PDE for the qj . If we write

pj =
∂L
∂vj

the E-L equation becomes

ṗj =
∂L
∂qj

We want to eliminate v from our equations and write everything in terms
of q and p. We can do this (via the implicit function theorem) if the
Jacobian matrix

∂pi

∂vj
=

∂2L
∂vi∂vj

has non-zero determinant.
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Assume that L satisfies this condition, then we can write vj in terms of
the q and p. We now consider (instead of L) the Hamiltonian function

H =
∑
j

vjpj − L

Differentiating H with respect to vj gives

∂H

∂vj
= pj −

∂L
∂vj

= 0

by definition of p so we have eliminated v -dependence1.

1Of course this isn’t really what’s going on: you might like to think about
how to phrase this in terms of the vertical cotangent bundle of the tangent
bundle (i.e. the bundle over TX whose fibre at (x , v) is the space of linear
functionals on TxX ) and its canonical function evaluating vertical covectors on
tangent vectors (“p · v”).
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Differentiating with respect to qj gives

∂H

∂qj
= − ∂L

∂qj
= ṗj

by the E-L equation. Thus we have a pair of first order PDE called
Hamilton’s equations of motion:

q̇j =
∂H

∂pj

ṗj = −∂H

∂qj

These describe the time evolution of a system with coordinates q and
“conjugate momenta” p.
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In the preceeding discussion we took a function H : R2n → R and
produced a vector field (q̇, ṗ) on R2n. Certainly the vector field depends
only on the first derivatives of H, so somehow it is a rephrasing of the
information contained in the 1-form dH.
At a point (p, q) a 1-form is an element of the dual space T ∗(p,q)R

2n so

we’re looking for a map T ∗R2n → TR2n, something like the musical ]
isomorphism in Riemannian geometry. Equivalently, we’re looking for a
nondegenerate bilinear form on TR2n. It is clear from Hamilton’s
equations that the bilinear form in question is the alternating 2-form

ω =
n∑

i=1

dqi ∧ dpi
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By this I mean that

Exercise

♦ : Hamilton’s equations can be rewritten as

ι(q̇,ṗ)ω = dH (1)

Definition

A vector field v is called Hamiltonian if

ιvω = dH

for some function H. The flow of a Hamiltonian vector field is called a
Hamiltonian flow.
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Lemma

The 2-form ω is preserved by any Hamiltonian flow.

Proof.

By Cartan’s formula for the Lie derivative of a form

Lvω = ιvdω + dιvω

= ddH

= 0.

This proof relies on Hamilton’s equation ιvω = dH (in fact all we need is
that ιvω is closed, which is the same as exact in R2n) and on the fact that
dω = 0 which is clear for this particular ω.
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We can therefore generalise Hamiltonian dynamics to manifolds other than
this linear phase space providing those manifolds admit a symplectic form,
that is a nondegenerate, closed 2-form. This 2-form provides a dictionary
to translate between closed 1-forms and vector fields whose flow preserves
ω.

Definition

A symplectic manifold is a manifold X equipped with a symplectic form ω.

In this more general context one easily sees classical properties of
Hamiltonian dynamics still hold:

Exercise

♦ : Show that on a symplectic manifold the Hamiltonian flow of a function
H preserves the Hamiltonian function H (of course if we formulate the
theory with a time-dependent Hamiltonian this obviously won’t be true
any more. However, the symplectic structure is still preserved.)
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The cotangent bundle

The cotangent bundle is the simplest extension of dynamics on Rn. The
phase space R2n is just the space of coordinates and conjugate momenta
for dynamics on Rn = {p ≡ 0}. What happens if we’re interested in
dynamics on a sphere (e.g. the surface of the Earth)? Or on the
complement of the trefoil knot (because we like pretty pictures)? Clearly
the phase space should locally look like (R2n,

∑n
i=1 dqi ∧ dpi ) because a

manifold looks locally like Rn. But how are we supposed to patch together
these charts into a global phase space?
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In the Lagrangian picture, changing q coordinates by a local
diffeomorphism q 7→ q′ gives rise to a velocities v 7→ v ′ via

v ′i = dφi
dt =

∂q′i
∂qj

vj by the chain rule. The quantity pi = ∂L
∂vi

changes to

p′i =
∂L

∂v ′i
=
∂L

∂vj

∂vj
∂v ′i

= pj
∂qj

∂q′i

Tensorially, then, v transforms as a vector and p as a covector. Therefore,
unsurprisingly, the correct global phase space for Hamiltonian dynamics on
a manifold M is the cotangent bundle T ∗M.
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If we pick local coordinates q on a patch in M and let p be the vertical
coordinates in T ∗M defined as follows: if η is a 1-form then

η =
∑
i

pi (η)dqi

The 2-form ω will be defined so that it agrees with the form in R2n over
any patch, i.e.

ω =
∑
i

dqi ∧ dpi

Remarkably, this does not depend on the choice of q coordinates2:

2Observe that we don’t have to pick p coordinates: they come for free once
we have picked q coordinates. This naturality is what underlies the fact that ω
is canonical.
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Lemma

If q′ is another choice of q-coordinates and ω′ the corresponding
symplectic form then ω = ω′.

Proof.

When we change coordinates,

dq′i =
∂q′i
∂qj

dqj =
∑
i

Mijdqj

The conjugate momenta p′j are still linear coordinates in a fibre (by
construction) and since

η =
∑
i

pi (η)dqi =
∑
j

p′j(η)dq′j =
∑
j

p′j(η)Mjidqi

we see that p′ = M−1p. In the combination
∑

i dq′i ∧ dp′i , the M and the
M−1 cancel and leave

∑
i dqi ∧ dpi .
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Theorem

The cotangent bundle T ∗M of a manifold M is equipped with a natural
symplectic 2-form ω. Naturality is meant in the following precise sense: If
φ : M → M is a diffeomorphism then define Φ = (φ−1)∗ : T ∗M → T ∗M
(which is a bundle map living over φ, i.e. it is linear on fibres). Then

Φ∗ω = ω.

This follows from what we have said, but let’s give a fresh proof to shed
new light on what’s really going on. There is a tautological 1-form λ on
T ∗M which at a point (q, p) is just the form p. By this I mean: to
evaluate λ on a vector V ∈ T(q,p)T ∗M, push V forward along the
cotangent bundle projection to a vector v at q and then set λ(V ) = p(v).
In coordinates this 1-form is

λ =
∑
i

pidqi

and dλ = ω is the 2-form we have defined above. Not only is ω closed,
but it is also exact in this case.
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Naturality of ω follows from naturality of the tautological form

Φ∗λ = λ

To see this latter, let x = (q, p) ∈ T ∗M, V ∈ TxT ∗M, π : T ∗M → M,
v = π∗V and Φ = (φ−1)∗ : T ∗M → T ∗M.

(Φ∗λ)x(V ) = λΦ(x)(Φ∗V )

= (Φ(x))(φ∗v)

= ((φ−1)∗p)(φ∗v)

= p(v)

= λ(V ).
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Geodesic flow as a Hamiltonian system

Let (M, g) be a Riemannian manifold. There is a very natural Hamiltonian
function we can write down on T ∗M

H(q, p) =
1

2
|p|2

We need g to make sense of the norm | · |2. This is the Legendre transform
of the Laplacian L = 1

2 |v |
2 on TM, whose Euler-Lagrange equations give

rise to the geodesic flow. It should come as no surprise that:

Exercise

♥ : The Hamiltonian flow of H gives rise to the cogeodesic flow which is
[-dual to the geodesic flow.
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Since the Hamiltonian is a conserved quantity of its own flow, we see that
for every ` ≥ 0 the geodesic flow preserves the sphere bundle of radius ` in
TM (of course, we already knew this).

Exercise

♦ : Let (M, g) be the round 2-sphere. Describe the radius-` circle bundle
and the flowlines of the geodesic flow. Do the same for the flat 2-torus.
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Symplectic vector spaces

Definition

A symplectic vector space is a pair (V , ω) where V is a real vector space
and ω is a nondegenerate alternating bilinear form.

For example, V = R2n, ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn. This example is
called the standard symplectic R2n.
The form ω provides an isomorphism

ι·ω : V → V̌

X 7→ ω(X ,−)
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An important concept is the symplectic orthogonal complement of a
subspace W ≤ V :

W ω = {v ∈ V |ω(w , v) = 0∀w ∈W }

equivalently W ω = (ι·ω)−1ann(W ) where ann is the annihilator. Since W
and its annihilator have complementary dimension we see that

dim W + dim W ω = dim V
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The symplectic orthogonal complement allows us to distinguish important
subspaces of V :

Isotropic subspaces, for which W ⊂W ω, i.e. ω|W = 0,

Symplectic subspaces, for which W ∩W ω = {0}, i.e. ω|W is
symplectic,

Coisotropic subspaces, for which W ω ⊂W .

Exercise

♦ : Give an example of a subspace of each type in the standard symplectic
R2n. Give an example of a subspace which falls into none of these types.
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Observe:

Lemma

If (V , ω) is a symplectic vector space then dim V = 2n is even and there is
a linear isomorphism V → R2n intertwining ω and ω0, the standard
symplectic form

ω0 = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

on R2n.

Proof.

Assume true for all symplectic vector spaces of dimension less than V (it is
certainly true for dim V = 0, so assume dim V > 0). Pick a vector v1 ∈ V
and let v2 be such that ω(v1, v2) = 1 (nondegeneracy). The span 〈v1, v2〉
is a symplectic subspace and its symplectic orthogonal complement is a
symplectic subspace W of dimension dim V − 2. By induction we can find
a basis v3, . . . , v2n of W such that the symplectic form gives the only
nonvanishing products as ω(v2i−1, v2i ) = 1 = −ω(v2i , v2i−1). The union of
this basis with {v1, v2} does the trick.
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So there is precisely one symplectic vector space up to isomorphism in
every even dimension. Symplectic manifolds are therefore even
dimensional. They are also naturally oriented, because the n-th power of
the symplectic form ω0 is the nondegenerate volume form

n!dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

That is

Lemma

A symplectic vector space (V , ω) has a natural nondegenerate volume
form ωn.
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A submanifold of a symplectic manifold is called isotropic, symplectic
or coisotropic respectively if its tangent spaces are of the
corresponding type.

Notice that a random submanifold will not be of any specific type: it
may have tangencies of varying type. Therefore these classes of
submanifold are special.

One particularly special class is the class of Lagrangian submanifolds:

Definition

An isotropic subspace has dimension at most dim V /2 and a Lagrangian
subspace is an isotropic subspace of this dimension.

Examples of global questions in symplectic geometry ask about the
existence of Lagrangian or symplectic submanifolds and the topology of the
(infinite-dimensional) space of all Lagrangian or symplectic submanifolds.
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Today we’re only interested in linear theory, so we might as well as
the linear question: what is the space of Lagrangian subspaces of a
symplectic vector space (the Lagrangian Grassmannian)?

This will turn out to be a homogeneous space just like the usual
Grassmannian so we need to find a group acting transitively on the
space of Lagrangian subspaces.

So let’s look at some groups.
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Symplectic linear group

The symplectic linear group Sp(2n) is the group of all linear
automorphisms of R2n which preserve the standard symplectic structure
(equivalently one could look at Sp(V ) but since V ∼= R2n we might as well
just look at Sp(2n)). To preserve the standard symplectic structure means

ω0(ψv , ψw) = ω0(v ,w)

or explicitly as matrices relative to a symplectic basis

ψTω0ψ = J0

where ω0 is the matrix (
0 id
−id 0

)
in coordinates x1, . . . , xn, y1, . . . , yn.
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Note that −ω0 = ωT
0 =: J0 looks like the diagonal complex matrix

with is on the diagonal when we write GL(n,C) ⊂ GL(2n,R) by
zk = xk + iyk .

We can actually use J0 to recover the standard Euclidean metric g0

on R2n

g0 = ω0(−, J0−)

The interaction of these three geometric structures: a symplectic
form, a metric and a complex structure, is central to symplectic
topology.

Jonathan Evans () Lecture II: Basics 30th September 2010 27 / 42



Lemma

Sp(2n) ∩ O(2n) = Sp(2n) ∩ GL(n,C) = GL(n,C) ∩ O(2n) = U(n)

Proof.

This is not hard once we write out the criteria for a matrix to live in one of
these groups

ψ ∈ Sp(2n) if and only if ψTω0ψ = ω0,

ψ ∈ O(2n) if and only if ψTψ = 1,

ψ ∈ GL(n,C) if and only if ψJ0 = J0ψ.

To see that the common intersection is U(n), consider GL(n,C) ∩ O(2n).
A unitary matrix is a complex matrix U for which U†U = 1. But in our
representation the conjugate-transpose operation † on complex
n-dimensional matrices is just the transpose on their 2n-dimensional real
representatives.
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In fact, the subgroup U(n) ⊂ Sp(2n) captures all of the topology of
Sp(2n):

Lemma

The inclusion U(n)→ Sp(2n) is a homotopy equivalence.

Let ψ be a symplectic matrix. It has a polar decomposition:

ψ = PQ = (ψψT )1/2((ψψT )−1/2ψ)

where P is positive definite symmetric and Q is orthogonal.

Here the square root of a positive symmetric matrix is defined by
conjugating it to a diagonal matrix, taking the square roots of the
diagonal entries and then conjugating back.

The deformation retract of Sp(2n) onto U(n) will be given by

ψt = P−t/2ψ

and it remains to show that ψt ∈ Sp(2n) for all t (equivalently that
P−t/2 ∈ Sp(2n)).
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For starters, ψψT ∈ Sp(2n) because it’s a product of symplectic
matrices. Therefore the lemma will follow from the assertion that
Rt ∈ Sp(2n) for any positive symmetric symplectic matrix R.

To show this, write R2n as a sum of eigenspaces Vλ of R (eigenvalue
λ). The subspace Vλ is also the λt-eigenspace for Rt .

Now let A ∈ Vλ and B ∈ Vµ:

ω0(RtA,RtB) = (λµ)tω0(A,B)

When t = 1 we have ω0(RA,RB) = ω0(A,B) so

(λµ)ω0(A,B) = ω0(A,B) (2)

Without loss of generality assume that ω0(A,B) ≥ 0. Then taking
the positive t-th root of Equation (2) and multiplying by ω0(A,B)1−t

gives
ω0(RtA,RtB) = ω0(A,B)

as required.
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Complex structures

The useful matrix J0 will now be generalised.

Definition

A complex structure on a vector space is a matrix J such that J2 = −1. A
complex structure J on a symplectic vector space (V , ω) is said to be
compatible with ω if

gJ(−,−) = ω(−, J−)

is a positive-definite metric and if ω is J-invariant, i.e.

ω(J−, J−) = ω(−,−)

In the absence of this latter condition we say that ω tames J. Let us write
J (V , ω) for the space of compatible complex structures on (V , ω).
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Lemma

The space J (V , ω) is equal to Sp(2n)/U(n) and is therefore contractible.

Proof.

WLOG ω = ω0. Since U(n) is the stabiliser of J0 under the action of
Sp(2n) on J (R2n, ω0) it suffices to show that Sp(2n) acts transitively on
J (R2n, ω0). Equivalently we need to find a symplectic basis which is
gJ -orthonormal. Pick v1 of unit length and let v2 = Jv1 (so that
gJ(v1, v2) = −ω(v1, v1) = 0).
Now look at the symplectic orthogonal complement of 〈v1, v2〉. This is
preserved by J since ω0 is preserved by J. Now we are done by
induction.
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Recall that an almost complex structure on a manifold is a smoothly
varying choice of complex structure on each tangent space. We say that
an almost complex structure on a symplectic manifold is compatible with
(respectively tamed by) the symplectic form if this is true on each tangent
space.

Lemma

Let (X , ω) be a symplectic manifold. The space J (X , ω) of compatible
almost complex structures on X is contractible.

Proof.

J (X , ω) is the space of sections of a bundle with contractible fibres and
hence contractible.

Exercise

♦ : Find a more explicit proof using the deformation retract we
constructed earlier.
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All this means that the tangent bundle of our symplectic manifold (which is
a Sp(2n)-bundle) has a canonical lift (up to homotopy) to a U(n)-bundle.
Therefore it has Chern classes so we can talk about the Chern classes of a
symplectic manifold. Indeed the same is true of any Sp(2n)-bundle.
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Lagrangian Grassmannian

Let L(n) denote the space of all Lagrangian subspaces of a 2n-dimensional
symplectic vector space.

Lemma

U(n) acts transitively on the space of Lagrangian subspaces of the
standard symplectic R2n with stabiliser O(n). That is, L(n) ∼= U(n)/O(n).

Proof.

Suppose that L is some Lagrangian subspace in the standard symplectic
R2n. If J is the standard complex structure then JL is orthogonal to L.
Pick an orthonormal basis X1, . . . ,Xn of L. Then Xi ,Yi = JXi is an
orthonormal symplectic basis of R2n. Since U(n) acts transitively on
orthonormal symplectic frames (U(n) = Sp(2n) ∩ O(n)) this proves the
lemma.
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Example

Here are some examples of Lagrangian subspaces.

The subspace {(x1, 0, x2, 0)} in R4 when using the standard
symplectic form dx1 ∧ dy1 + dx2 ∧ dy2.

The graph of an antisymplectic map φ : (V , ω)→ (V , ω) i.e.
φ∗ω = −ω.

Here are some examples of Lagrangian submanifolds.

The antidiagonal in S2 × S2, the graph of the antipodal map on the
sphere, where ω is the usual area form.

S1 × S1 ⊂ C× C.

The zero-section of a cotangent bundle with its standard symplectic
structure.
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We’re now going to make some remarks about the topology of the
Lagrangian Grassmannian. First think about the group U(n). It has
π1(U(n)) = Z because it fibres over U(1) with simply-connected fibres
SU(n) (via the determinant map). Now consider the fibration

O(n) −−−−→ U(n)y
U(n)/O(n) = L(n)
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The homotopy long exact sequence of this fibration gives

π1(O(n))→ π1(U(n))→ π1(L(n))→ π0(O(n))→ π0(U(n))

When n = 1 we have L(1) = S1/2 = RP1. To see this, note that L(1) is
just the space of unoriented lines: the group U(1) acts by rotating and
when it gets to ±1 ∈ O(1) we return to the original position.
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More generally, observe that the composition O(n)→ U(1)
det→ U(1)

has image ±1 so the inclusion O(n)→ U(n) kills π1(O(n)).

Therefore π1(L(n)) is an extension of Z/2 = π0(O(n)) by
Z = π1(U(n)) by the exact sequence above.

One can see explicitly that it is the extension Z→ Z→ Z/2 by
looking at the π1-injective subgroup U(1) ⊂ U(n): half-way around
we get to −1 ∈ O(n).
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So in all cases, π1(L(n)) = Z.

This isomorphism is actually canonical: to see this pick an
isomorphism of the symplectic vector space with the standard one
(the space of these is connected) and take as a generator the loop
φtR× Rn−1 ⊂ R2n where φt is an anticlockwise rotation by tπ
radians in one of the symplectic factors of R2n (which makes sense
because the symplectic subspace is canonically oriented).

Therefore we can actually assign an integer to a loop γ : S1 → L(n)
of Lagrangian subspaces. We call it the Maslov index of γ.
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Suppose that u : D2 → X is an immersed disc in a symplectic manifold
whose boundary is contained in a Lagrangian submanifold L. Then we can
trivialise u∗TX symplectically (i.e find an isomorphism with the standard
product bundle D2 × R2n) and the loop of tangent spaces to L pulls back
to a loop of Lagrangian subspaces in R2n. We can thereby define the
Maslov index of a disc with Lagrangian boundary conditions.

Exercise

♦ : Compute the Maslov index of the unit disc in C.
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Exercise

♦ : We have seen that U(n) acts transitively on Lagrangian subspaces.
Show that Sp(2n) acts 2-transitively on transverse Lagrangian subspaces
(i.e. any two transverse Lagrangian subspaces can be moved
simultaneously by a symplectic linear map to the two standard Lagrangians
Rn × {0} and {0} × Rn in R2n.

Exercise

♥ : Let’s work in R4 with the standard symplectic structure. We say two
symplectic planes S1 and S2 are simultaneously holomorphisable if there
exists an ω-compatible complex structure J for which JS1 = S1 and
JS2 = S2. First show that this implies S1 t S2. Now assume S1 is the
standard (x1, y1)-plane and write S2 as the graph of a 2-by-2 matrix M
(why are we justified in doing this?). What condition on M implies that S2

is symplectic? What condition on M implies S1 and S2 are simultaneously
holomorphisable? What does this say about the action of Sp(2n) on pairs
of transverse symplectic planes?
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