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In today’s lecture, being the last of this course, we’ll pull out all the stops
and demonstrate some of the enormous power of the pseudoholomorphic
curve machinery introduced last time. Our aim will be to prove the
following things:

Gromov’s theorem that the (infinite-dimensional) symplectomorphism
group of (S2 × S2, ω ⊕ ω) retracts onto the finite-dimensional
subgroup of isometries for the Kähler metric (product of round
metrics).

McDuff’s construction of two symplectic forms on S2 × S2 × T 2

which are deformation equivalent (through non-cohomologous forms)
but not isotopic (through cohomologous forms).

The first is extraordinarily powerful, illustrates how useful curves can be in
4-d and uses many techniques we’ve now learned. The second is slightly
off-the wall, doesn’t rely on 4-d, illustrates how hard things get in higher
dimensions and is an extremely beautiful proof.
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First I will quickly recap the pseudoholomorphic curve existence proof from
last time because I rushed it. The aim was to prove

Theorem

Let (X , ω) = (CP1 × V , ωFS ⊕ ωV ) be a product symplectic manifold of
dimension 2n where the minimal area of a homology class in V is at least∫
CP1 ωFS = 1. Then for any ω-compatible almost complex structure J and

any point p there is a J-holomorphic sphere in the homology class
A = [S2 × {?}] passing through p.

The idea was to consider the moduli space of marked simple
J-holomorphic spheres

(M∗(A, J)× CP1)/PSL(2,C)

with its evaluation map ev :M∗(A, J)→ X . Since the moduli space (for
generic J) is a compact manifold (by minimality of A) of dimension
2n + 2c1(A) + 2− 6 = 2n (plus 2 from a marked point, minus 6 from
reparametrisations) we can define the degree of the evaluation map.
Degree is invariant under bordism so the number deg evJ is independent of
(generic choice of) J.
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A product almost complex structure on X = S2 × V is regular for curves
in the class A (i.e. a regular value of the Fredholm projection map from
the universal moduli space to the underlying space of almost complex
structures) - this is because the curves are of the form S2 × {?} and the
normal bundle to such a curve splits as a sum of complex line subbundles
with Chern class zero. Therefore it’s easy to see that the evaluation map
has degree 1 for any regular J (so there’s a J-curve in the class A through
every point). To see that there’s a J-curve in the class A through every
point for a non-regular J, recall that the space of regular J is dense so we
can find a sequence Ji → J of regular Ji approximating our irregular J.
Take a Ji -curve ui homologous to A through p. Consider the Gromov-limit
of the ui (which exists by Gromov compactness). Since the class A is
minimal there is no bubbling and the limit curve is just a smooth J-curve
homologous to A through p.
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It turns out in dimension 4 we can say even more.

Theorem (Gromov)

If (X , ω) = (S2 × S2, ωFS ⊕ ωFS) and J is an ω-compatible almost
complex structure then there is a J-holomorphic sphere in each homology
class A = [S2 × {?}], B = [{?} × S2] through every point. In fact there is
exactly one J-holomorphic A-sphere αp and one J-holomorphic B-sphere
βp through any given p and αp intersects βp exactly once, transversely.

The only part of this theorem we haven’t proved is the uniqueness and
intersection property. This phenomenon is very special to 4-dimensional
symplectic geometry and I’ll explain it in a moment. We will use this
theorem to show that the symplectomorphism group of (X , ω) is
homotopy equivalent to SO(3)× SO(3) n Z/2.
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Positivity of intersections in 4d

Theorem (Positivity of intersections, Gromov-McDuff)

Suppose a pair of J-holomorphic curves in a 4-manifold intersect in some
set of points pi and that the intersection at pi has multiplicity mi (e.g.
mi = 1 means transverse, mi = 2 means tangent but the second
derivatives are linearly independent, etc.). Then mi > 0. That is to say
each intersection point contributes a positive amount to the homological
intersection of the two curves and that contribution is 1 if and only if the
intersection is transverse.

Since the curves αp and βp in the previous theorem had homological
intersection 1 and [αp] · [αp] = [βp] · [βp] = 0, the unproven parts of that
theorem follow from this positivity of intersections property. Positivity of
intersections is not easy to prove, but it is easy to see that it fails in higher
dimensions, even for integrable complex structures: a pair of complex lines
in CP3 can happen to intersect, but one can easily disjoin them because
they each have real codimension 4.
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Gromov’s calculations for Symp(S2 × S2, ω ⊕ ω)

Theorem

The symplectomorphism group of (S2 × S2, ω⊕ ω) is homotopy equivalent
to SO(3)× SO(3) n Z/2, which can be identified as the subgroup of
Kähler isometries (acting by rotations of each factor and the involution
(x , y) 7→ (y , x). The symplectomorphism group of (S2 × S2, λω ⊕ ω) for
λ > 1 has an element of infinite order in its fundamental group.

Exercise

♣ : I will not prove the second statement, I’ll just leave it as an (unfairly
hard!) exercise with the hint that now the (formerly Lagrangian)
antidiagonal can sometimes be represented by a pseudoholomorphic sphere
with c1(∆) = −2 (if you get stuck, look at Gromov’s original paper
(Section 2.4.C2) for a stronger hint and then go and look at later papers
of McDuff, Abreu and Anjos for a full proof and indeed a complete
working-out of the homotopy type of the symplectomorphism group).
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Proof

We’ll actually just show that

Symp0 = {φ ∈ Symp(S2 × S2, ω ⊕ ω) : φ∗ : H∗(S2 × S2;Z) 	= id}
' SO(3)× SO(3)

Fix a point (p, q) ∈ S2 × S2 and define

M = {(u, v , J) : ∂Ju = ∂Jv = 0, u∗[S
2] = [S2 × {?}],

v∗[S
2] = [{?} × S2], (p, q) ∈ im(u) ∩ im(v)}

Note that G × G (G = PSL(2,C)) acts by reparametrisations on M and
by our (uniqueness and) existence theorem the quotient is precisely the
space J of compatible almost complex structures. Note that G × G
retracts onto the subgroup SO(3)× SO(3).
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Consider the diagram

SO(3)× SO(3)
ι−−−−→ Symp0 −−−−→ Symp0/(SO(3)× SO(3))y yτ y

G × G −−−−→ M −−−−→ M/(G × G )

where τ(ψ) = (ψ ◦ α,ψ ◦ β, ψ∗J0), α(x) = (x , q′), β(y) = (p′, y),
(p′, q′) = ψ−1(p, q) and J0 is the standard product complex structure.
Define

τ ◦ ι(SO(3)× SO(3)) =M0 ⊂M

Since the horizontal maps in the diagram form fibre sequences, since J is
contractible and since SO(3)× SO(3) ⊂ G × G is a deformation retract,
it’s not hard to see that M0 is a deformation retract of M.
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Therefore let Ψt :M→M be a homotopy from Ψ1 = id to Ψ0 where
Ψ0(M) ⊂M0 and Ψt |M0 = idM0 . We will construct a map
F :M→ Symp0 which is a left-inverse of τ , i.e. F ◦ τ = id. That is we
will find a smooth choice of symplectomorphisms over M such that if
(u, v , J) = (ψ ◦α,ψ ◦ β, ψ∗J0) then F(u, v , J) = ψ. Then the composition
F ◦Ψt ◦ τ will give a homotopy from id (at time 1) to a deformation
retract of Symp0 onto SO(3)× SO(3) at time 0.
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The map F is constructed as follows. Starting with a triple (u, v , J) we
want to construct a map S2 × S2 	. Gromov’s theorem tells us there are
foliations of S2 × S2 by J-holomorphic spheres in the homology classes [α]
and [β]. The curves u and v are each leaves in these respective foliations.
For (z1, z2) ∈ S2 × S2 define αz2 to be the (unique) leaf of the α-foliation
through v(z2) and βz1 to be the leaf of the β-foliation through u(z1).
These leaves intersect in a single point, which we denote φ(z1, z2) and the
assignment φ turns out to be a diffeomorphism (which relies on the elliptic
nature of the Cauchy-Riemann equations).
Note that φ preserves the curves u and v and fixes their intersection point
(p, q).
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Now we want to obtain a symplectomorphism ψ from φ in a canonical way
and we will set F(u, v , J) = ψ. This will be achieved by a Moser isotopy.

Lemma

The forms ωt = (1− t)ω + tφ∗ω are symplectic (t ∈ [0, 1]).

Once we have the lemma, since the forms ωt are cohomologous there exists
a Moser isotopy θt such that θ0 = id, θ∗1ω1 = ω and so ψ = φ ◦ θ1 is a
symplectomorphism. The Moser isotopy is canonically determined once we
have chosen an antiderivative for ω̇t = φ∗ω − ω but we can simply chose
the unique 1-form in the image of d∗ (for a fixed metric) by Hodge theory.
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Proof of lemma.

The φ-preimages of the rulings α = S2 × {?} and β = {?} × S2 are
J-holomorphic curves by construction and hence ω-symplectic (by
ω-tameness of J). Moreover φ∗ω is positive on these preimages because ω
is positive on the rulings (the symplectic form is just the product form).
Now ωt = (1− t)ω + tφ∗ω is obviously closed, so it’s symplectic if

0 < ω2
t = (1− t)2ω2 + t2(φ∗ω)2 + 2t(1− t)ω ∧ φ∗ω

since both ω2 > 0 and (φ∗ω)2 > 0 it suffices to check that the cross-term
is positive. But if v1, . . . , v4 is a local frame for T (S2 × S2) such that
v1, v2 span T (S2 × {?}) and v3, v4 span T ({?} × S2) then the cross-term
evaluates on the frame to give terms like ω(v1, v2)φ∗ω(v3, v4) (which are
manifestly positive) and ω(v1, v3)φ∗ω(v2, v4) (which vanish because the
standard foliations are ω-orthogonal so φ∗ω(v2, v4) = 0) This completes
the proof of the lemma.
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The proof of this theorem also applies to construct a symplectomorphism
proving the following theorem which we used in our proof of Luttinger
unknottedness.

Theorem

A symplectic 4-manifold which is symplectomorphic to C2 outside a
compact set (and which has H2 = 0) is globally symplectomorphic to C2.

Standardness at infinity allows you to compactify to S2 × S2. The
hypothesis on H2 is used to rule out bubbling of pseudoholomorphic
spheres. If H2 is allowed to be nonvanishing then you can also get
blow-ups of C2.
The remainder of the lecture was not delivered during the course due to
time constraints.
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Non-isotopic symplectic forms after McDuff

On X = S2 × S2 × T 2, take the symplectic form Ω = λωS2 ⊕ ωS2 ⊕ ωT 2

where each ω has area 1 on the corresponding factor and λ ≥ 1. Let φz,s
be the 2πs-rotation of S2 around the axis through the point z ∈ S2.
Define the diffeomorphism

ψ : X 	, ψ(x , y , (s, t)) = (x , φx ,s(y), (s, t))

where x and y are points on S2 and (s, t) ∈ T 2. Let Ω′ = (ψ−1)∗Ω.

Theorem (McDuff)

The forms Ω and Ω′ are not isotopic (through cohomologous symplectic
forms) when λ = 1 (though they are for any λ > 1).

Henceforth we’ll assume λ = 1.
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Proof

Let A be the homology class S2×{?}×{?} and let J be the Ω-compatible
complex structure (direct sum of standard complex structures on each
factor). The moduli space of simple curves in the class A, M∗(A, J) is
compact since A has minimal area. The expected dimension is
2n + 2c1(A)− 6 = 2c1(A) = 4. Take two marked points on the domain

M0,2(A, J) =
(
M̃∗(A, J)× S2 × S2

)
/PSL(2,C)diag

and let evi denote the evaluation map at the ith marked point. M0,2(A, J)
has expected dimension 8 (4 from the moduli space plus 2 from each
marked point). It is not hard to check that the standard J is actually
regular (this involves the computation of a Dolbeaut cohomology group1)
and so it’s unsurprising that the moduli space has the right dimension.

1H0,1

∂
(CP1,O(2)⊕O2) = H1,0

∂
(CP1,O(−2)⊕O2)∗ =

H0(CP1,O(−4)⊕O(−2)2)∗ = 0 (by Serre duality) since the sphere has normal
bundle O2.
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We can generically choose J to make ev2 transverse to the s-circle
γ = {(x0, y0, (s, t0)) : s ∈ S1} (indeed it is already transverse for our
standard J). The space

M(γ, J) = ev−12 (γ)

is therefore a manifold of dimension 3 = 8− 5, 5 being the codimension of
γ in X . Varying J gives a cobordism of moduli spaces. In particular a
generic path Jt of compatible almost complex structures gives a cobordism
M(γ, Jt) of M(γ, J0) with M(γ, J1) and the evaluation map
ev1 :M(γ, Jt)→ X gives a bordism from ev1 :M(γ, J0)→ X to
ev1 :M(γ, J1)→ X .
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Suppose that Ω and Ω′ were isotopic through a family Ωt of symplectic
forms and suppose Jt is a path of generic Ωt-compatible almost complex
structures joining the standard J with ψ∗J, its pushforward under ψ (which
is compatible with Ω′ = (ψ−1)∗Ω). Varying symplectic forms don’t matter
for any of the foregoing, because the transversality setup at no point uses
the existence of a taming symplectic form. That is only used to prove
compactness, and since we have taming symplectic forms all the way along
our path we know that we get the relevant energy bounds to prove Gromov
compactness. So the general theory of pseudoholomorphic curves gives us

Lemma

If Ω and Ω′ were isotopic then the evaluation maps

ev1 :M(γ, J)→ X and ev1 :M(γ, ψ∗J)→ X

would be bordant.

We will show that they are not bordant maps.
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Caveat

Notice that we can deform Ω to Ω′ through non-cohomologous symplectic
forms (by letting λ get slightly larger than 1). Why does this not give us a
bordism of evaluation maps? The point is that the homology class
[S2 × {?} × {?}] is no longer minimal when λ > 1, so our moduli spaces
are no longer compact manifolds, we need to take bubbling into account
and this messes up our bordism. In other words, McDuff’s beautiful
argument really uses the symmetry of the symplectic form, just like
Gromov’s computation of the homotopy type of the symplectomorphism
group of S2 × S2 breaks down when you use a nonmonotone symplectic
form.
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Bordism

What is the space M(γ, J)? Pretty clearly it’s just S1 × S2: through each
(x0, y0, (s, t0)) ∈ γ there is a single J-sphere ({(x , y0, (s, t0)) : x ∈ S2}
(remember there is still a marked point on the domain of a map in
M(γ, J), so we can think of S1 as γ and S2 as the domain, giving
S1 × S2 overall). A well-known bordism invariant of maps is the Hopf
invariant (of maps from S3 to S2)2. So to imitate the Hopf map we turn
ev1 into a map from S1 × S2 to a 2-manifold, by projecting
X = S2 × S2 × T 2 onto its second factor. This gives us maps

f0, f1 : S1 × S2 → S2

associated to J and ψ∗J respectively.

2As Michael Weiss kindly pointed out to me, the Hopf invariant isn’t a
bordism invariant. However it is invariant if the bordism in question satisfies the
condition that the map on H2 from the cobordism to S2 vanishes, which is
indeed what McDuff uses.
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It’s clear from the construction that f0(S1 × S2) = {y0}, which is
nullbordant. Since S1 × S2 is the zero-surgery on the unknot in S3 we can
take the surgery cobordism with the constant map to y0 as a bordism from
the constant map S3 → S2 to f0. We’ll construct a bordism from f1 to the
Hopf map S3 → S2 and then existence of a bordism from f0 to f1 would
give rise to a bordism from the constant map to the Hopf map, which
contradicts bordism invariance of the Hopf invariant.
The map f1 is given by

(s, x) 7→ φx ,s(y0)

This sends the sphere {(0, x) : x ∈ S2} to the point y0 and the circle
K = {(s, y0) : s ∈ S1} to the point y0. Hence it factors through

S1 × S2 → S3 → SO(3)→ S2

The composite S3 → SO(3)→ S2 is the Hopf map. It’s easy to perturb f1
to make it constant on a tubular neighbourhood of the circle K , then
surger the circle out to get a cobordism to S3 over which the map extends
as a bordism to a (perturbed) Hopf map.
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We have now opened up a can of pseudoholomorphic worms. There are
two sensible directions to pursue for those who are interested. First,
chapter 9 of McDuff-Salamon’s big book which has lots more interesting
applications of this theory (including obstructions to Lagrangian
embeddings, existence of periodic orbits and much, much more). Second,
the rest of McDuff-Salamon’s big book proves all the analytical details
which I have been too lazy/time-constrained to mention. If anyone’s
interested, we can set up some kind of reading group next term to cover
this stuff, but someone else will have to write the lectures!
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