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It’s finally time to introduce the theory of pseudoholomorphic curves.
Today we will define pseudoholomorphic curves and discuss and motivate
some of their properties. My aim in this lecture is not to prove anything,
rather to give you the idea of how J-holomorphic curves behave and then
how to use them to prove things. If you want to see proofs, go and look at
the big book by McDuff-Salamon.
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Definition

Let (X , J) be an almost complex manifold. A J-holomorphic curve in X is
a map u : Σ→ X from a Riemann surface (Σ, j) to X such that

J ◦ du = du ◦ j

Equivalently, in local complex coordinates z = x + iy on Σ and local real
coordinates x j on X

∂uj

∂x
+ J j

i

∂ui

∂y
= 0

We restrict to a 2-dimensional source because it turns out that for a
non-integrable J there are even local obstructions (coming from the
Nijenhuis tensor) to the existence of higher-dimensional J-holomorphic
submanifolds. In contrast there are many local J-holomorphic curves
through any given point.
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The differential equation governing J-holomorphic curves is “elliptic” and
so they share many of the nice properties of holomorphic curves in an
integrable complex manifold. For instance:

(Unique continuation:) Suppose u and v are two J-holomorphic
curves Σ→ X for which there exists z ∈ Σ at which u and v and all
their derivatives agree. Then u = v globally.

The set of critical points of a compact J-holomorphic curve
u : Σ→ X is finite. The set of points of Σ which map to critical
values of u is finite.

Unless u : Σ→ X factors through a holomorphic branched multiple
cover Σ→ Σ′, the set of injective points (where du 6= 0 and
u−1(u(x)) is a single point) is nonempty, open and dense.
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A curve which does not factor through a branched cover is called simple.
Simple curves are our friends: they have a much better behaved
deformation theory than multiple covers. The last property we listed
means that a curve is somewhere injective (i.e. has an injective point) if
and only if it is simple. Here’s the first piece of magic:

Theorem

If A is a homology class in (X , J) and M∗(A, J) denotes the space of
simple J-holomorphic curves u with genus g such that u∗[Σ] = A then, for
generic J, M∗(A, J) is a manifold of dimension

dim(X )(1− g) + 2c1(A).

If {Jt}t∈[0,1] is a generic path of almost complex structures (with generic
endpoints) then the union ⋃

t∈[0,1]

M∗(A, Jt)

is also a manifold (a cobordism between the spaces at either end).
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This theorem is not so useful since we do not know if any of these spaces
are compact: a cobordism only tells you anything if it’s compact, for
instance the point (or any manifold) is cobordant to the empty set if you
allow noncompact cobordisms. Compactness fails in a number of ways.

The group of holomorphic automorphisms of Σ may be noncompact,
for instance if Σ = CP1 it has Aut(CP1) = PSL(2,C). Since this acts
on our space we can hardly expect our space to be compact,

A family of J-holomorphic curves might degenerate in some
unspeakable way,

For instance, a family of simple J-holomorphic curves might limit to a
multiple cover.
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Here’s an example of some J-curves degenerating.

Example

[x : y ] 7→ [x2 : y 2 : εxy ] in CP2 is a family of J-holomorphic maps whose
images are conics which are smooth except when ε = 0,∞. What happens
as ε→ 0? The curve tends to a double cover of [x : y : 0]. What happens
when ε→∞? Let’s reparametrise to absorb the ε into the x variable:
x ′ = εx. This corresponds to looking at the limit of points near
∞ = [1 : 0] ∈ CP1. The curve becomes [x ′ : y ] 7→ [(x ′)2/ε2 : y 2 : x ′y ] and
as ε→∞ this limits to the line [a : b] 7→ [0 : b : a]. Similarly rescaling by
y ′ = εy, the curve [x : y ′] 7→ [x2 : (y ′)2/ε2 : xy ′] limits to the line
[a : b] 7→ [a : b : 0], so the limit as ε→∞ is a union of two lines. Actually
any fixed circle [re iθ : 1] limits to the point [0 : 0 : 1] of intersection
between these lines. To recover something sensible you have to look at the
limit of a circle which gets closer and closer to 0 or ∞, i.e. [rε±1e iθ : 1].

Jonathan Evans () Lecture XIII: Pseudoholomorphic curves I 16th December 2010 7 / 18



In fact the second piece of magic tells us that all compactness issues can
be dealt with in an elegant way. First we define the energy of a
pseudoholomorphic curve

E (u) =
1

2

∫
Σ
|du|2dvol

The choice of metric on Σ is irrelevant because E is conformally invariant:
pick a metric for which j is orthogonal, rescale it pointwise by some
function f and you change |du|2 by f −1 (because du is a 1-form with
values in u∗TX ) and dvolfg =

√
det(fg)dx ∧ dy = f dvolg . Recall that in

2-d, j determines the conformal class of the metric by setting
g = dx2 + dy 2 in conformal coordinates z = x + iy .
Suppose ui is a sequence of maps. If we can control pointwise the norm of
|dui | then by Arzela-Ascoli we can find a convergent subsequence of maps.
Gromov’s amazing compactness theorem tells us what happens if we can
only bound the energy. Since energy controls only the L2-norm of |dui | we
don’t expect to get a convergent subsequence because there could be
points where |dui | → ∞ (as the previous example shows). Gromov proved
that the worst that can happen is exactly what we described in the
previous example!
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Bubbling

Definition (Bubbling)

A J-holomorphic curve u : CP1 → X occurs as a bubble in the limit of a
sequence of maps ui : Σ→ X if there is a sequence of points pi ∈ Σ and a
sequence of discs gi : BRn → Σ of radius Ri →∞ with gi (0) = pi such
that ui ◦ gi tends to f |C⊂CP1 .

We can see that the reparametrisations in our example allowed us to
embed larger and larger radius discs into Σ = CP1 centred at 0 and ∞
such that these discs recaptured different parts of the limit. Gromov’s
theorem tells us this is exactly what happens when |dui (pi )| → ∞. We
now assume J is ω-tame for some symplectic form ω.
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Gromov compactness

Theorem (Gromov compactness, roughly speaking)

A sequence of J-holomorphic curves ui with bounded energy has a
“convergent” subsequence (after possibly reparametrising each ui ) whose
“limit” is a union of J-holomorphic curves α : Σ→ X and βj : CP1 → X
where the curves βj are a finite number of bubbles attached to points of
the curve α. We may assume that the energies E (ui ) converge to some
definite E , and furthermore we know that E = E (α) +

∑
E (βj).

Note that we get a compactness statement about the moduli space
M∗(A, J)/G where G is the reparametrisation group (e.g. PSL(2,C) for
Σ = CP1). I won’t prove this theorem as it’s probably the hardest part of
the basic theory of pseudoholomorphic curves. Instead, I’ll talk about
where the energy bound comes from.
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Energy bounds

Assume J is ω-tame and use the pullback to Σ of the associated metric
g(u, v) = 1

2 (ω(u, Jv) + ω(v , Ju)) (the usual prescription only works in the
compatible case). The energy integrand is locally (in conformal
coordinates z = x + iy)

|du|2 = |∂xu|2 + |∂yu|2

= |∂xu + J∂yu|2 − 2g(∂xu, J∂yu)

= |∂Ju|2 + ω(∂xu, ∂yu) + ω(J∂su, J∂tu)

When u is J-holomorphic the first term is zero and since J∂xu = ∂yu the
two terms on the right both give

ω(∂xu, ∂yu) = u∗ω(∂x , ∂y )
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Topological control

Thus the energy of a J-holomorphic curve in an ω-tame almost complex
manifold is

E (u) = u∗ω

which is topological, so a sequence of curves in the same homology class
have equal (in particular bounded) energy.
We also know that if a sequence of curves Gromov converges to a union of
curves α, βj then the ω-areas of the homology classes of α and βj add up
to the ω-area of the original curve. Since J-curves are symplectic
submanifolds we know that these areas must be positive, so only a finite
amount of bubbling can occur and it’s topologically quite controlled. This
allows us to rule out bubbling in some (extremely nice) situations. For
example, suppose ui is a sequence of curves in the homology class [H] of a
line in CP2. This class has minimal ωFS -area (equal to 1) and so we cannot
bubble off anything (or we’d be left with a component of area zero).
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Example existence theorem

We’re now in a place where we can sketch how to prove an example
existence theorem for holomorphic curves. This is precisely the theorem we
used to prove Gromov’s nonsqueezing theorem.

Theorem

Let (X , ω) = (CP1 × V , ωFS ⊕ ωV ) be a product symplectic manifold of
dimension 2n where the minimal area of a homology class in V is at least∫
CP1 ωFS = 1. Then for any ω-compatible almost complex structure J and

any point p there is a J-holomorphic sphere in the homology class
A = [S2 × {?}] passing through p.
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We first introduce the concept of an evaluation map. We take the moduli
space of holomorphic spheres with a marked point

(M∗(A, J)× CP1)/PSL(2,C)

where we divide out by simultaneous reparametrisation by φ ∈ PSL(2,C)

φ(u, z) = (u ◦ φ, φ−1(z))

and observe that the evaluation map

[(u, z)] 7→ u(z)

is well-defined.
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Proof.

The moduli space M∗(A, J)/PSL(2,C) is compact: there is no bubbling
because A has minimal ω-area and a limit curve has to be simple because
A is a primitive homology class. The expected dimension of the moduli
space M∗(A, J)/PSL(2,C) is 2n + 2c1(A)− 6 (6 is the dimension of the
Möbius group PSL(2,C) of reparametrisations, which acts freely) but
c1(A) = 2 so the moduli space has dimension 2n − 2 for generic J. The
space of holomorphic spheres with a marked point is therefore
2n-dimensional. For J = J0 the evaluation map is clearly of degree 1. It’s
not hard to check in this case that J0 is “generic” (details omitted). Now
varying J gives a cobordism of moduli spaces and hence a bordism of
evaluation maps. Degree is a bordism invariant of maps, so for any J the
evaluation map has degree 1. But a degree 1 map is surjective.
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We observe the following consequence

Theorem (Gromov)

If (X , ω) = (S2 × S2, ωFS ⊕ ωFS) and J is an ω-compatible almost
complex structure then there is a J-holomorphic sphere in each homology
class A = [S2 × {?}], B = [{?} × S2] through every point. In fact there is
exactly one J-holomorphic A-sphere αp and one J-holomorphic B-sphere
βp through any given p and αp intersects βp exactly once, transversely.

The only part of this theorem we haven’t proved is the uniqueness and
intersection property. This phenomenon is very special to 4-dimensional
symplectic geometry and I’ll explain it in a moment. We will use the
theorem next week to show that the symplectomorphism group of (X , ω)
is homotopy equivalent to SO(3)× SO(3) n Z/2.
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Positivity of intersections in 4d

Theorem (Positivity of intersections, Gromov-McDuff)

Suppose a pair of J-holomorphic curves in a 4-manifold intersect in some
set of points pi and that the intersection at pi has multiplicity mi (e.g.
mi = 1 means transverse, mi = 2 means tangent but the second
derivatives are linearly independent, etc.). Then mi > 0. That is to say
each intersection point contributes a positive amount to the homological
intersection of the two curves and that contribution is 1 if and only if the
intersection is transverse.

Since the curves αp and βp in the previous theorem had homological
intersection 1 and [αp] · [αp] = [βp] · [βp] = 0, the unproven parts of that
theorem follow from this positivity of intersections property. Positivity of
intersections is not easy to prove, but it is easy to see that it fails in higher
dimensions, even for integrable complex structures: a pair of complex lines
in CP3 can happen to intersect, but one can easily disjoin them because
they each have real codimension 4.
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That’s it for our whirlwind introduction to pseudoholomorphic curve
theory. Next lecture we’ll see how to use them to prove some more cool
theorems.
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