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In this lecture we will be concerned with groups G acting on a symplectic
manifold (X , ω) in a way which preserves the symplectic form. In fact,
we’ll mostly be interested in groups which act via Hamiltonian
diffeomorphisms, i.e. homomorphisms

G → Ham(X , ω)

The groups we are interested in are compact Lie groups, mostly tori.
There is a very beautiful, explicit finite-dimensional theory which will give
us a better understanding of the geometry of blow-ups and of highly
symmetric (“toric”) symplectic manifolds. This finite-dimensional theory
inspires many ideas in the infinite-dimensional setting which includes
Yang-Mills theory and the existence theory of Kähler metrics (sadly I won’t
have time to discuss this).
Let’s start with circles.
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Circle actions and symplectic reduction

Let H be a function on (X , ω) and consider the time-t flow φt of the
Hamiltonian vector field XH defined by ιXH

ω = dH. If all orbits of XH

are 1-periodic then the map R 3 t 7→ φt ∈ Ham(X , ω) descends to a
homomorphism S1 → Ham(X , ω). Such a homomorphism is called a
Hamiltonian circle action.

Observe that LXH
H = ιXH

dH = ω(XH ,XH) = 0 so the flow of XH

preserves the level sets of H. On each regular level set the circle
action is free (fixed points are those points where XH = 0, which
happens iff dH = 0) and so the quotient Mc := H−1(c)/S1 is a
manifold if c is a regular value of H. We call it the reduced space at
level c .
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Let ιc : H−1(c)→ X be inclusion of the level set. The 2-form ι∗cω is
degenerate precisely along the direction field generated by XH , that is
TH−1(c)ω = 〈XH〉 so we can define an S1-equivariant symplectic vector
bundle over H−1(c) whose fibre at x is TxH−1(c)/〈XH〉. When we
perform the reduction this symplectic vector bundle descends to the
quotient and is naturally identified with the tangent bundle of Mc .
If we write ωc for the reduced symplectic form and πc : H−1(c)→ Mc for
the quotient map then π∗cωc = ι∗ω by construction and we see that
dωc = 0.

Definition

The symplectic manifold (Mc , ωc) is called the symplectic reduction of X
along the circle action generated by H at level c.
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Example: the squared distance function on the standard Cn

H(z) = |z |2 =
n∑

i=1

|zi |2

The level sets are 2n − 1-spheres. The Hamiltonian vector field generated
by H is precisely the Hopf field, whose integral curves are the fibres of the
Hopf fibration. To see this, recall that a fibre of the Hopf fibration is the
circle of intersection between a complex line through the origin and a
sphere of fixed radius. Since

ω(XH , ·) = dH(·) = g(JXH , ·)

where g and J are the standard Euclidean metric and complex structure
on Cn, we see that XH is J∇H, but ∇H is radial and together

〈∇H, J∇H〉

span a complex line through 0.
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The symplectic reduction of the level set H−1(c) is then a symplectic
manifold diffeomorphic to the base of the Hopf fibration, i.e. CPn−1. It
should come as no surprise that we obtain a multiple of the Fubini-Study
form. Indeed, this is obvious since the Hamiltonian is U(n)-invariant. The
value of c tells us the total volume of this symplectic manifold.
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Integrable geodesic flow

Another great example comes when we have a Riemannian manifold
(M, g) whose geodesics all have minimal period exactly 1. For example,
Sn, RPn. Such a Riemannian metric is called a Zoll metric and there are
many interesting examples (not just the obvious ones!). Then the squared
length function on T ∗M is a Hamiltonian which generates the geodesic
flow. Although this is not a circle action (because (p, v) will only go all
the way around a geodesic if |v | ∈ Z) it is a free circle action on H−1(1),
i.e. the unit cotangent bundle. We can still symplectically reduce on this
level. For Sn we get a symplectic quadric n − 1-fold this way.
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Symplectic cut
We now want to cut a symplectic manifold along the level set of a
Hamiltonian circle action and collapse the circles. This gives a nice way to
look at blow-up. Suppose (X , ω) admits a symplectic S1-action generated
by a Hamiltonian H and c is a regular value of H such that the circle acts
freely on H−1(c). Form

(X × C, ω ⊕ dx ∧ dy)

and take the new Hamiltonian function F = H − x2 − y2. The action of
e iθ ∈ S1 is

(x , z) 7→ (e iθ(x), ze−iθ)

Now F−1(c) = {(x , z) ∈ X × C : H(x) = |z |2 + c} which contains
H−1(c)× {0}. Forming the quotient by S1 we get

X̃c = F−1(c)/S1 ⊃ H−1(c)/S1

Away from H−1(c), X̃ can be identified symplectically with
X \ H−1(−∞, c] via

[x , z ] 7→ e i arg z(x)
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Return to blow-up
As an example, we can take X = Cn with H(z) = |z |2. The reduced
manifold at any nonzero radius is CPn, the symplectic cut replaces
the ball of some radius by the reduced manifold at that radius. This is
a much more elegant way of looking at the construction of the
symplectic form on the blow-up. Of course this can be implanted
inside a symplectic ball of larger radius, regardless of whether that
ball is contained in a Hamiltonian S1-manifold.
We also remark that there is a link with last lecture’s fibre sum
construction. If we have a symplectic CPn = E ⊂ X 2n+2 such that
the normal bundle of E has first Chern class −H then we can fibre
sum with CPn+1 along CPn ⊂ CPn+1 (which has opposite normal
bundle, first Chern class +H). This replaces E with a ball (the
complement of CPn ⊂ CPn+1) so acts as a symplectic blow-down.
There is also a more exciting blow-down operation which turns a
neighbourhood of a symplectic −4-sphere into a neighbourhood of a
Lagrangian RP2. This comes from fibre-summing with a quadric
curve in CP2 whose complement is T ∗RP2.
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We can also symplectically cut the cotangent bundle of a Zoll manifold
along the unit cotangent bundle. For Sn we thereby obtain the quadric
n-fold with real part Sn and a quadric n − 1-fold at infinity (the
symplectically reduced boundary). For RP2 we get CP2 (the symplectically
reduced boundary is a quadric curve) - compare with the last comment on
the previous slide.
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Averaging over symmetries
If we have an ω-compatible almost complex structure J on a Hamiltonian
S1-manifold (X , ω,H) we would like to turn it into an S1-invariant almost
complex structure by averaging. Unforunately, the space of compatible
almost complex structures is not convex so we can’t just average. Instead,
we pass to the (convex) space of metrics by g(·, ·) = ω(·, J·) and average
there to obtain an S1-invariant metric. Unfortunately this may not be
associated to an ω-compatible J. So we recall the following trick implicit
in Lecture II. Given our new g , define A (uniquely) by

ω(·, ·) = g(A·, ·)

Check that AT = −A, so AAT is a symmetric matrix which is positive
definite in the sense that

g(AATu, u) = g(ATu,ATu) > 0

Therefore we can define
√

AAT and set J =
√

AAT
−1

A and check this is
an ω-compatible a.c.s. which is invariant by uniqueness.
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Fixed submanifolds

As an application of the existence of an invariant compatible almost
complex structure, let’s prove that

Lemma

A component of a fixed submanifold F of a Hamiltonian S1-action is a
symplectic submanifold.

Let ψt be the time t Hamiltonian flow and let p be a fixed point for
all t. The derivatives dψt(p) form a family of matrices on TpX . This
is certainly a symplectic matrix. In fact if J is an invariant compatible
a.c.s. then dψt(p) is a family of unitary matrices.

If v is tangent to the fixed submanifold containing p then
dψt(p)v = v so v is an eigenvector with eigenvalue 1.
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Conversely if v is a 1-eigenvector then the geodesic through (p, v)
stays in the fixed submanifold. To see this, note that its initial
conditions are S1-invariant and hence uniqueness of geodesics with
given initial conditions means that the geodesic is fixed pointwise by
the circle action. Therefore TpF is identified with the 1-eigenspace of
dψt(p), which is J-invariant because the matrix is unitary, and hence
symplectic.
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Torus actions

We now generalise to the case of a torus action, or equivalently a
collection of several circle actions which all commute with one another.
The most interesting case is when an n-torus acts in a Hamiltonian way on
a symplectic 2n-manifold but let’s start by looking at when the
Hamiltonian flows of two functions commute.

Definition

The Poisson bracket of two functions F ,G on a symplectic manifold
(X , ω) is the function defined by

{F ,G} = ω(XF ,XG )

Lemma

[XF ,XG ] = X{F ,G}
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Proof.

Note that [X ,Y ] = LXY = d
dt

∣∣
t=0

(φt)
−1
∗ Y where φt is the time t flow

along X . Therefore

ι[X ,Y ]ω =
d

dt

∣∣∣∣
t=0

(ι(φt)−1
∗ Yω)

= LX (ιYω)

= ιXdιYω + dω(X ,Y )

so if X = XF , Y = XG then the first term vanishes and the second term is
d{F ,G}.

Corollary

Two autonomous (i.e. time-independent) Hamiltonian flows commute if
and only if the corresponding Hamiltonian functions Poisson commute.
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This tells us that

A Hamiltonian torus action is given by a collection of k linearly
independent Poisson-commuting functions H1, . . . ,Hn each defining a
circle action.

Here linear independence refers to the 1-forms dHi being linearly
independent on a dense open subset.

The orbits are isotropic (if {F ,G} = 0 then ω(XF ,XG ) = 0), in
particular for an n-torus acting on a 2n-manifold the generic orbits are
Lagrangian (tori) and one can never have more than n linearly
independent Poisson-commuting functions.

Definition

The map (H1, . . . ,Hn) : X → Rn is called the moment map of the
Hamiltonian torus action.
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Examples: Cn, blow-up

Consider the functions H1 = |z1|2, . . . ,Hn = |zn|2 on Cn = {(z1, . . . , zn)}.
These generate circle actions (XHi

acting by e iθ on the i-th coordinate)
which clearly commute. the image of Cn under this collection of maps is
the positive orthant in Rn. For example, the image of C2 is just
{(x , y) ∈ R2 : x ≥ 0, y ≥ 0}. The origin goes to (0, . . . , 0). Over each real
coordinate axis lives the complex line in the corresponding complex
coordinate direction.
If we blow up a ball of radius r then the moment image gets truncated
along the line |z |2 = |z1|2 + |z2|2 = H1 + H2 = 1 and over this line lives
the exceptional sphere.
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Examples: CPn

Use homogeneous coordinates [z0 : . . . : zn] ∈ CPn and set

(H1, . . . ,Hn) =

(
|z1|2

|z |2
, . . . ,

|zn|2

|z |2

)
where |z |2 =

∑n
i=0 |zi |2. Normalising away from z0 = 0 so that |z |2 = 1

things look like Cn with the same circle action as before. However we note
that

0 ≤ |z0|2 = 1−
n∑

i=1

|zi |2

means that we restrict to the subset
∑n

i=1 |zi |2 ≤ 1, i.e. the ball of radius
1 in Cn. The moment image is the subset of the positive orthant below
the hyperplane

K = {H1 + . . .+ Hn = 1}

At infinity we compactify by adding in a CPn−1. The moment image of
this is precisely the intersection of the hyperplane K with the positive
orthant.
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Point

That is to say the moment image of CPn is a simplex in Rn whose vertices
are at the origin and at the unit points along the coordinate axes. The
face spanned by all vertices except the origin is the moment image of the
CPn−1 “at infinity” and is itself a simplex...

Exercise

Show that the height function on S2 ⊂ R3 generates the circle action of
rotation around the z-axis. What is the moment image of S2 × · · · × S2

under the moment map generating the torus action which rotates each
sphere in this way?

It’s clear that we can read a lot of geometry off the moment image. In
CPn we can see linear subspaces living over faces, we can see Lagrangian
tori living over interior points. What kind of moment image do we expect
in general?
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Convexity theorem

Theorem (Atiyah)

The image of a compact symplectic manifold (X , ω) under the moment
map µ = (H1, . . . ,Hk) : X → Rk of a Hamiltonian torus action is the
convex hull of the points µ(p) where p is a fixed point of the torus action.
The fixed points form a finite collection of symplectic submanifolds over
each of which the moment map is constant.

The proof of this theorem is not hard, it is a combination of observations
we have already made and some Morse-Bott theory. However, I don’t have
time to prove it. I also want to point out a kind of converse.
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Delzant’s theorem

Definition

A polytope is a subset of Rn defined by a finite collection of linear
inequalities 〈u, x〉 ≥ c. The vectors u are the normals of the supporting
hyperplanes defining these inequalities. A polytope with vertices in
Zn ⊂ Rn is called a Delzant polytope if at each vertex, the collection of
normal vectors u to all the supporting hyperplanes through the vertex form
a Z-basis for the integer lattice in Rn.

One can use a Z-affine transformation of Rn to transform a Delzant
polytope so that it has any given vertex at the origin and the germ of the
polytope at that vertex is just the positive orthant. Given a Delzant
polytope ∆ we will construct a symplectic manifold with a Hamitonian
torus action whose moment polytope is ∆.
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The construction is easy enough. Let’s do it in the case of CP1 and it’ll be
clear(ish) how to generalise. Take the vector space with basis ei
corresponding to the facets v ≥ 0, v ≤ 1 of the polytope (in this case 2-d,
generated by the endpoints of a line). Consider the map sending the basis
vector ei to ui , in this case: (

1 −1
)

The kernel of this map is spanned by (1, 1)T . Consider µ : C2 → R2 the
(shifted by ci ) moment map sending (z1, z2) to (|z1|2, |z2|2 − 1) which
generates the standard (S1)2-action on C2. Let ψ = p ◦ µ where p is
projection onto the subspace 〈(1, 1)T 〉. This generates a subtorus (circle)
action and we can divide out the zero-level by this to obtain a space W .
In our case we just have the subset |z1|2 + |z2|2 − 1 = 0 or
|z1|2 = 1− |z2|2 divided out by a circle (i.e. the unit disc with the unit
circle |z2| = 0 identified to a point where S1 fixes z2 = 0 and rotates
|z1| = 1). This still has a residual moment map to R by projecting onto

the complement of 〈(1, 1)T 〉, namely |z1|
2−|z2|2
2 = |z1|2.
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