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We’ve spent most of the course so far discussing examples of symplectic
manifolds coming from algebraic geometry and exploring their topology.
This seems like a good idea: the topology of objects arising in algebraic
geometry is usually highly nontrivial (e.g. Hopf fibration, exotic spheres
coming from links of singularities) yet explicit. However in doing so we’re
cutting ourselves off from the vast majority of the symplectic world, as
we’ll see in this lecture. The aim is to introduce techniques to construct
and detect non-Kähler symplectic manifolds, and thereby open our eyes to
the startling diversity of the class of all symplectic manifolds.
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What’s so special about Kähler manifolds?

Recall that

Definition

A symplectic manifold (X , ω) is called Kähler if it admits an ω-compatible
integrable complex structure J. The associated metric gJ(·, ·) = ω(·, J·) is
called the Kähler metric.

If we want to find a manifold which is symplectic but non-Kähler then we
need criteria by why we can rule out the existence of a compatible complex
structure, i.e. we need topological restrictions on Kähler manifolds. The
most basic of these comes from the symmetries of the Hodge diamond...
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Theorem (Hodge)

A Kähler manifold admits a decomposition of its cohomology with
complex coefficients

Hk(X ;C) ∼=
⊕
i+j=k

H i ,j(X )

where H i ,j(X ) is the (i , j)-th Dolbeaut cohomology group H i (X ,Ωj).
Moreover we have symmetries

H i ,j(X ) ∼= H j ,i (X )

Hn−i ,n−j(X ) ∼= H i ,j(X )∗

coming from complex conjugation and Serre duality respectively.

Corollary

dim H1,0(X ) = dim H0,1(X ) so b1 = dim H1,0(X ) + dim H0,1(X ) is even
for a Kähler manifold. Indeed bj is even for any odd j.
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Kodaira-Thurston manifold
Here is an example of a symplectic 4-manifold with odd first Betti number.
Let K = T 3 × R/Z where j ∈ Z acts by

(x , y , z , t) 7→ (x , y + jx , z , t + j)

The symplectic form dx ∧ dy + dz ∧ dt is invariant under the
diffeomorphism (x , y , z , t) 7→ (x , y + jx , z , t + j) and hence descends to
give a symplectic form on K . The space K has a bundle projection to the
(z , t)-torus and the fibre is a symplectic T 2 (can you write it as a fibre
bundle with Lagrangian torus fibres?). The universal cover is R4 with deck
group

Γ = {(j1, j2, k1, k2) ∈ Z4}, (j ′, k ′) ? (j , k) = (j + j ′,Aj ′k + k ′)

where Aj is the matrix

Aj =

(
1 j2
0 1

)
so π1(K ) = Γ. Notice that the commmutator subgroup is [Γ, Γ] ∼= Z,
generated by (0, 0, 1, 0). Therefore b1, the rank of H1 = Γ/[Γ, Γ], is 3.
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McDuff’s example

Here’s a simply-connected example of a non-Kähler symplectic manifold
due to McDuff. We haven’t really developed enough theory to explain this
one properly, so you’ll have to take some stuff on trust, namely.

Theorem (Gromov-Tischler)

It’s possible to embed a symplectic k-manifold X symplectically in CPk+1.

So embed K symplectically in CP5 and blow it up to get a 10-manifold

C̃P5 (recall that blowing up a submanifold means replacing each fibre V of
its normal bundle with the projective space PV ). We know that blowing
up a point doesn’t affect the fundamental group. In fact the same is true

for blowing-up submanifolds, so we know that π1(C̃P5) = {1}. When we

blow up, a Mayer-Vietoris calculation shows that b3 = H3(C̃P5) = H1(K )
which is odd. Therefore McDuff’s example cannot be Kähler.
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π1(Kähler)?

Can we characterise the topology of a Kähler manifold? This is a hard and
venerable question. Other than the b1 ≡ 0 mod 2 restriction coming from
a naive inspection of the Hodge diamond, there are other classical
restrictions on the topology (formality) coming from the hard Lefschetz
theorem and one can cook up symplectic manifolds which violate these.
Instead of discussing this (which would require quite a detour) there’s
another incarnation of this venerable question which is more concrete and
whose symplectic analogue fails utterly.

Question

Which finitely-presented groups arise as fundamental groups of Kähler
manifolds?
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Answer

The answer is not known, but there are extremely subtle restrictions
coming from Hodge theory and harmonic map theory. For example, if
G = π1(H) for a hyperbolic n > 2-manifold H = H/G (i.e. quotient of
hyperbolic n-space (n > 2) by cocompact discrete subgroup of isometries)
then G 6= π1(X ) for any Kähler X . To see this, suppose X is Kähler and
π1(X ) = G . Then there is a “classifying map” X → H/G = K (G , 1) for
the fundamental group. Approximate this by a smooth map and then
apply harmonic map flow to it. Negative curvature of the target space
means the flow is well-behaved and you end up with a harmonic classifying
map. Now a very clever differential geometry argument shows that the
differential of a harmonic map from a Kähler manifold to a negatively
curved manifold has rank at most 2 (see Carlson-Toledo).
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Gompf’s argument

So which groups can occur as π1(X ) where X is a symplectic manifold?
More groups than for Kähler manifolds? Yes: even beyond the b1 ≡ 0
mod 2 examples. For example one can relatively easily construct
symplectic manifolds with hyperbolic fundamental groups (the twistor
spaces of hyperbolic manifolds) which are therefore non-Kähler. More
shockingly

Theorem (Gompf)

For any n ≥ 2, any finitely-presented group can occur as the fundamental
group of a symplectic 2n-manifold.

But Gompf’s result really illustrates how big the class of symplectic
manifolds is and indicates how hopeless any attempt at classification
would be (bear in mind that there are logical obstructions to the
algorithmic classification of finitely-presented groups: the symplectic
manifolds is even bigger!).
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Gompf’s argument is based on a surgery procedure called fibre
connect-sum (or just Gompf sum).

Ordinary connect sum in 2-d: You take a point p ∈ X and q ∈ Y , you
find small radius ε Darboux charts B and C centred at p and q, you
identify B \ {p} ∼= Bε \ {0} with C \ {q} ∼= Bε \ {0} via a symplectic
involution φ of the annulus Bε \ {0} which switches the boundary
components. This allows you to form the union

X \ {p}
∐

Y \ {q}/ ∼, x ∼ φ(x)

which is symplectic because the gluing map on the overlap is
symplectic. The symplectic form on the annulus is rdr ∧ dθ and φ can
be taken to be

(r , θ) 7→ (
√
ε2 − r2,−θ)

We cannot mimic this in higher dimensions: otherwise we could use φ
to glue two symplectic discs boundary to boundary and get a
symplectic structure on the sphere Sn, n > 2, which has H2(Sn) = 0,
so is not symplectic.
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In the ordinary connect sum we used the fact that a point has real
codimension 2 so its punctured normal bundle is an annulus. In higher
dimensions we might hope to mimic the connect sum if we had a real
codimension 2 symplectic submanifold Σ: then its punctured normal
bundle (i.e. νΣ \ Σ) is fibred by annuli and we could use φ fibrewise. This
works and is what we call fibre sum or Gompf sum. We need:

A pair of symplectic manifolds X , Y of the same dimension 2n,

In each of X and Y a symplectic submanifold (A and B respectively)
and a symplectomorphism ψ : A→ B,

An isomorphism of symplectic normal bundles ψ̃ : νA ∼= νB∗ which
covers the symplectomorphism ψ.

We took the dual νB∗: why do we want opposite normal bundles? This is
just the usual thing with gluing: you want to think of A as being “at
infinity” in X and B as being “at zero” in Y ; now think about how the
oriented unit circle looks like from 0 and from ∞ in CP1.
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More explicitly, we pick a fibrewise compatible almost complex structure
on νA and push it forward to νB along ψ̃. This lets us talk about radius
of normal vectors (remember the normal fibre has a symplectic form
because it’s the symplectic orthogonal complement of a symplectic
subspace). We also pick a 1-form τ on νA \ A which evaluates to 1 on
∂/∂θ and to 0 on radial vectors in each fibre (this is equivalent to picking
a connection: we require τ to vanish also on horizontal vectors). Then
η = 1

2d(r2τ) is a 2-form on νA \ A which equals rdr ∧ dθ on each fibre.

Now ΩA = tη + π∗ωA (and (ψ̃−1)∗ΩA = ΩB) is a symplectic form on νA
(respectively νB) for small t and the symplectic neighbourhood theorem
tells us that (νA,ΩA) is symplectomorphic to a neighbourhood of A ⊂ X
(same for B). Now we glue these neighbourhoods by using the fibrewise
symplectomorphism φ, noting that φ reverses the orientation of the normal
fibres.
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Note that the choice of ψ̃ is not unique, even up to homotopy. Using
different isomorphisms will give (even topologically) different twisted fibre
sums: e.g. connect summing T 2 × S2 with T 2 × T 2 along a T 2 can give
T 4 if done in the obvious way, but can give the Kodaira-Thurston
manifold K if a twisted gluing map is used. Also, the parameter ε (or t)
determining the size of the neighbourhoods we chose determines the total
volume of the fibre sum. Different εs give different volumes.
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Example (Elliptic surfaces)

Consider a generic pencil of cubic curves in CP2. Two generic cubics
intersect in nine points so the base locus of the pencil consists of nine
points. Write E (1) for the blow-up of CP2 along the base locus. This
admits a map to CP1 (with twelve singular fibres) whose smooth fibres are
cubic curves (symplectic tori). The normal bundle to a fibre is trivial
(because the fibre has zero intersection with nearby (homologous) fibres).
Therefore we can fibre sum E (1) (rational elliptic surface) with itself along
a fibre k times and we get a symplectic manifold E (k). It’s not hard to
compute the Euler characteristic of E (k) is 12k and to see (van Kampen)
that E (k) is simply-connected. In fact, E (2) is a symplectic K3 surface.
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Proof of Gompf’s theorem
Given an arbitrary finitely presented group

G = 〈α1, . . . , αk |β1, . . . , β`〉
we will now construct a symplectic 4-manifold1 (X , ω) with π1(X ) ∼= G .
To do this we start with a symplectic manifold with even bigger
fundamental group:

(F × T 2, ωF ⊕ ωT 2)

where F is a surface of genus k. Recall that

π1(F ) = 〈a1, . . . , ak , b1 . . . , bk |
k∏

i=1

[ai , bi ] = 1〉

Think of 〈α1, . . . , αk〉 as the free subgroup generated by a1, . . . , ak . Let
{γi}`i=1 be immersed loops representing homotopy classes corresponding to
the relations {βi}`i=1 and let γ`+i = bi for i = 1, . . . , k . Pick an embedded
homologically essential loop λ ⊂ T 2 and consider the Lagrangian tori

Ti = γi × λ ⊂ F × T 2

1To get 6-, 8-,... manifolds just multiply with S2 × S2 × · · · .
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We will perturb the symplectic form to make sure these are symplectically
immersed and then perturb them to ensure they’re symplectically
embedded and mutually disjoint. The idea will be to fibre sum each of
these with E (1). In the resulting manifold the fundamental group will have
changed by killing off the word γi . Performing one further surgery to a
symplectic torus {z} × T 2 allows us to kill off the generators of the
fundamental group coming from the torus factor, leaving us with G .
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The fact that the surgery kills the relevant elements of the fundamental
group will follow from van Kampen’s theorem once we know that
E (1) \ T 2 is simply-connected. To see this, observe (van Kampen) that its
fundamental group is generated by a meridian for the T 2 (since E (1) is
simply-connected). But the 9 exceptional spheres are sections of the
Lefschetz fibration f : E (1)→ CP1 and a meridian just projects to a circle
encircling the point f (T 2). Therefore we can take as our meridian the
image of this circle under a section. But this is nullhomotopic in the
complement E (1) \ T 2, using the other hemisphere of the section as a
nullhomotopy.
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We will now perturb the symplectic form. Suppose ρ be a closed 1-form
on F which restricts to a volume form on each of the oriented loops γi (we
will construct this in a moment) and let θ be a 1-form on T 2 which is a
volume form on λ. The 2-form ω + ερ∧ θ is symplectic form small ε (since
the nondegeneracy condition is open) and makes Ti into a symplectically
immersed submanifold. Identify T 2 with λ× S1 and note that
Ti ⊂ F × λ. We can resolve each Ti near its immersed points by
perturbing it in the S1-direction and ensuring it’s embedded. Similarly we
can disjoin the Ti from one another.
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Now we will construct ρ. Note that we may have to modify the surface to
achieve this. First perturb the curve γ so they all intersect transversely and
their union is a graph in F . We will find a closed 1-form ρ′ whose integral
along each edge is positive. Once we have this we know that γ∗i ρ

′ is
homologous to a volume form θi and θi − γ∗i ρ′ = dfi for some function fi .
We can assume each fi vanishes at the vertices of the graph and this allows
us to extend them to a function f : F → R. Finally we let ρ = ρ′ + df .
There may be topological obstructions to finding ρ′ in the first place. For
example if the graph contains a closed cycle bounding a polygon then the
integral of 0 = dρ′ over the polygon equals the sum of the integrals of ρ′

along the edges by Stokes’ theorem, which should be positive by
assumption. To construct ρ′ we modify F . This construction is sketched in
the following slide.
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We are drawing close to the end of this short course in symplectic
topology and we have so far proved two “hard theorems”: Luttinger
unknottedness and Gromov’s nonsqueezing. In both cases we just assumed
the results we needed from the theory of pseudoholomorphic curves. This
unsatisfactory state of affairs must continue one lecture longer because
there is another central topic in symplectic topology which I do not feel I
could omit from an introductory course, namely the theory of Hamiltonian
group actions and symplectic reduction. It will hopefully only take me one
lecture to dispense with my guilt at not mentioning this subject, leaving us
with two lectures in which I will outline the main theorems about
pseudoholomorphic curves and how to use them.
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