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Last week we discussed hyperplane (or hypersurface) sections of varieties
and how they capture the low-dimensional topology (e.g.
homology/homotopy in degrees strictly less than half the dimension) of
the ambient variety X . We also gave an example of what happens when
you start to vary a hyperplane section in a pencil (a 1-complex-parameter
family): the sections overlap in a “base locus” and a finite collection of
isolated sections develop singularities. We finished by defining a Lefschetz
pencil to be a pencil of hypersurface sections {aF0 + bF1 = 0}[a:b]∈P1 for
which the base locus is smooth and the singularities are at worst nodal.
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We would like to think of a Lefschetz pencil as a map from the variety to
P1, sending a point p to the corresponding [a : b] such that
aF0(p) + bF1(p) = 0. This does not work, because the different sections
overlap in the base locus. To solve the problem, form the space

X̃ = {(x , [a : b]) ∈ X × P1 : aF0(x) + bF1(x) = 0}

which is just (convince yourselves!) the blow-up of X along the base locus.
If you’re not happy with blowing up the normal bundle of a subvariety,
restrict attention to the case when X is a complex surface
(4-real-dimensional) and the base locus is a finite collection of points.
The space X̃ has a natural projection to P1 and we call this a Lefschetz
fibration. It’s not a fibration in the usual sense (what would the homotopy
long exact sequence imply for a pencil of quartic curves on P2?).
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We abstract the topological essence of a Lefschetz fibration:

Definition (Topological Lefschetz fibration (TLF))

A topological Lefschetz fibration on an oriented manifold X is a surjective
submersion f : X → CP1 whose critical points are isolated, contained in
distinct fibres and such that near each critical point p there exist oriented
charts xi near p ∈ X and z = x + iy near f (p) ∈ CP1 such that

f (p + x) = f (p) + (x1 + ixn+1)2 + · · ·+ (xn + ix2n)2

Notice that in our, projective, case the total space admits a symplectic
form and this restricts to a symplectic form on the fibres. In fact:

The total space of any TLF admits a symplectic form making the
fibres symplectic (due to Gompf, relatively easy),

Any symplectic manifold admits a TLF whose fibres are symplectic
submanifolds (due to Donaldson, extremely hard).

Jonathan Evans () Lecture X: Picard-Lefschetz II 25th November 2010 4 / 20



Monodromy

Instead of proving either statement, we’ll look at what happens when we
have a TLF f : X → CP1 with a symplectic form ω on the total space
which restricts to a symplectic form on the smooth fibres. The first thing
we can do is to define a symplectic orthogonal complement to Tx f −1(p)
inside TxX . This is a 2-real-dimensional subspace projecting
isomorphically to TpCP1 along Df and we can use it as a connection on
the bundle X \ f −1(crit).

Proposition

(i) Parallel transport along a path γ : [0, 1]→ CP1 \ crit using this
connection gives a symplectomorphism Pγ : f −1(γ(0))→ f −1(γ(1)). (ii) If
γ is a nullhomotopic loop then Pγ is a Hamiltonian symplectomorphism of
f −1(γ(0)).
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Proof of (i).

Let ṽ denote the horizontal lift of a vector field v from the base CP1 \ crit.
Define α = ιṽω and notice that by definition α vanishes on vertical
vectors. The derivative of ω under parallel transport along ṽ is

Lṽω = dιṽω + ιṽdω = dα

Now let’s take a single point and pick coordinates xi centred at that point
such that ∂1, . . . , ∂2n−2 are vertical and ∂2n−1, ∂2n are horizontal at that
point (can’t do it in a neighbourhood because connection could be
curved). Since α vanishes on vertical vectors we know
α = α1dx2n−1 + α2dx2n at this point. Then dα applied to two vertical
vectors must clearly vanish. Since this is measuring the derivative along ṽ
of ω restricted to a fibre, we see that parallel transport preserves the
symplectic form on fibres.
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Unfortunately before proving (ii) we need to make a digression about flux.

Definition

If ψt is a path of symplectomorphisms with ψ0 = id then the flux is the
cohomology class

flux(ψt)
T
0 =

[∫ T

0
ιXtωdt

]
∈ H1(X ;R)

where ψ̇t = Xt ◦ ψt .

Note that by the fundamental theorem of calculus

d

dt

∣∣∣t=K flux(ψt)
T
0 = [ιXK

ω]

so flux(ψt)
T
0 ≡ 0 for all T if and only if ψt is a Hamiltonian isotopy1.

1i.e. the time-1 map of a time-varying Hamiltonian vector field ιXtω = dHt
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Here is an interpretation of the flux. Note that
H1(X ;R) = Hom(π1(X );R). For [γ] ∈ π1(X ) it’s easy to see that

flux(ψt)
T
0 (γ) :=

∫ T

0

∫ 1

0
ω(Xt(γ(s)), (̇γ)(s))dsdt

Since ψt are symplectomorphisms, ιXtω is closed and by Stokes’s theorem
this integral is independent of γ up to homotopy. The integral is also the
integral over S1 × [0, 1] of β∗ω where β(s, t) parametrises the tube traced
out by γ under the flow of Xt . Stokes again implies that the integral is
independent of ψt up to isotopy fixing the endpoints.
If ψt and φt are two different paths then we can define their juxtaposition
ψt ◦ φt (up to isotopy) to be a smooth reparametrisation of the path

φ2t , t ≤ 1/2; ψ2t ◦ φ1, t ≥ 1/2

and it’s not hard to see in terms of this integral formula for the flux that it
is additive under juxtaposition of paths.
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We’ve seen therefore that the flux gives a homomorphism from the group
of paths in the symplectomorphism group under juxtaposition to H1(X ;R)
whose kernel contains the subgroup of Hamiltonian symplectomorphisms.
In fact...

Lemma

If ψt is a path of symplectomorphisms starting at ψ0 = id such that

flux(ψt)
1
0 = 0

then ψt is isotopic with fixed endpoints to a Hamiltonian isotopy.

Vanishing flux tells us that
∫ 1
0 ιXtωdt = dF is exact. Let φF be the

Hamiltonian flow of F and ψ′t be the juxtaposition φ−1F ◦ψt . We have that
X ′t , the field generating ψ′t , satisfies∫ 1

0
ιX ′

t
ωdt = 0

on the nose. In particular by nondegeneracy of ω we have
∫ 1
0 X ′tdt = 0

(integrating the time-varying vector field pointwise in time).
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Let

Yt = −
∫ t

0
X ′kdk

and consider the flow d
ds θ

s
t = Ytθ

s
t starting at θ0t = id. Since Y0 = Y1 = 0,

θs0 = θs1 = id also.
Now the juxtaposition κt = θ1t ◦ ψ′t is an isotopy from ψ′t to a Hamiltonian
isotopy as one easily checks by computing the flux:

flux(κt)
T
0 = flux(θ1t )T0 + flux(ψ′t)

T
0

= flux(θsT )10 +

∫ T

0
[ιX ′

t
ω]dt

= [ιYT
ω] +

∫ T

0
[ιX ′

t
ω]dt

= 0

where we have used homotopy invariance in the first term on the second
line.
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Proof of (ii)

Recall we wanted to show that the monodromy around a contractible path
in the base CP1 \ crit of a symplectic Lefschetz fibration is Hamiltonian.
Let γ : S1 → CP1 \ crit be such a path and h : D2 → CP1 \ crit be a
nullhomotopy. Pullback the fibration along h: since a bundle over the disc
is trivialisable we may pick a trivialisation τ : D2 × F → h∗X which is
symplectic in the sense that τ : ({p} × F , σ)→ Fp = f −1(h(p)), ω|Fp) is a
symplectomorphism for all p ∈ D2. Define Ψt = τ−1 ◦ Pγ(t) ◦ τ , a path of
symplectomorphisms of (F , σ). By our integral formula (given a loop
[ρ] ∈ π1(F ))

flux(Ψt)
1
0 =

∫
S1×[0,1]

β∗σ =

∫
S1×[0,1]

β∗τ∗ω

where β(θ, t) = (Ψt(ρ(θ)), 1).
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But this 2-chain β is homotopic to β′(θ, t) = (Ψt(ρ(θ)), e2πit) and
µ = τ ◦ β′ sends (θ, t) to (Pγ(t)(τ(ρ(θ))), γ(θ)) hence the flux equals∫

S1×[0,1]
µ∗ω = 0

since the parallel transport field is the degenerate direction on
(S1 × F = γ∗X , γ∗ω). Now by our waffle about flux this means that the
time-1 map of parallel transport around a contractible loop is indeed
Hamiltonian.

Corollary

As a consequence of the previous proposition, we get a representation

π1(CP1 \ crit)→ Symp(F )/Ham(F )

called the monodromy representation.
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Vanishing cycles

What happens now if we try to parallel transport INTO a singular fibre?
Nothing goes wrong if we stay away from the singularities (since in the
smooth part we can still define the tangent space of the fibre and hence its
symplectic orthogonal complement and hence a connection). But we also
want to understand what gets collapsed down to a node. Let’s consider a
vanishing path in CP1, that is a path γ : [0, 1]→ CP1 with
γ(t) ∈ CP1 \ crit for t < 1 and γ(1) = y ∈ crit. Also we’ll write γ(0) = x
and ? for the critical point in f −1(y).

Definition

The vanishing thimble Vγ associated with the vanishing path γ is the set
of points v ∈ f −1γ such that Pγ(t)(v)→ ? as t → 1. The vanishing cycle
is the intersection of the vanishing thimble with a fibre.
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Proposition

Vγ is an embedded Lagrangian ball which intersects γ−1(p) (p 6= y) in a
Lagrangian sphere.

Assume that the symplectic form is compatible with an almost complex
structure J0, integrable in a neighbourhood of ? and such that the
coordinate charts with respect to which f (z1, . . . , zn) = z2

1 + · · ·+ z2
n are

J-complex coordinates. Let γ̃ : (s, t) 7→ CP1 be a tubular neighbourhood
(s ∈ (−ε, ε)) of γ (where γ(t) = γ̃(0, t)) and let H be the function on
f −1(γ̃) such that H(x) = −s if x ∈ f −1(γ̃(s, t)). If X is the Hamiltonian
vector field associated to H then it is horizontal (since H is constant on
fibres: ω(XH ,V ) = dH(V ) = 0 if V is vertical) and it projects to a
multiple λ(x)∂γ̃∂t where λ(x) > 0 unless x = ?. In holomorphic coordinates
centred at ? it’s not hard to check that ? is a hyperbolic critical point with
negative and positive eigenspaces isomorphic via J0. Vγ is the stable
manifold of ? and is hence (Hadamard-Perron) a ball living over γ.
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Since XH is horizontal, translation along it is just a reparametrisation of
parallel transport (which is symplectic) and since the sphere Vγ ∩ f −1(p) is
crushed to a point in the limit we know that the symplectic form restricted
to Y must vanish. Now it is an easy matter to check that the parallel
transport of a Lagrangian submanifold traces out a Lagrangian
submanifold.

Exercise

Show that if f : X → C is a fibre bundle whose total space admits a
symplectic form and whose fibres are symplectic, γ is an embedded path
starting at a point p in C and A ⊂ f −1(p) is a submanifold then A is
Lagrangian if and only if A traces out a Lagrangian submanifold of X
under parallel transport with respect to the natural symplectic connection
(symplectic orthogonal complement of fibres).
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We now have a huge collection of potentially interesting
symplectomorphisms (monodromies from Lefschetz fibrations) and
Lagrangian spheres (vanishing cycles from Lefschetz fibrations). The two
are intimately related as one can see from the following:

Theorem (Fundamental theorem of Picard-Lefschetz theory)

If p ∈ crit, γ ⊂ CP1 \ crit is a small loop encircling p and no other critical
point and δ is a path from p to γ(0) then the symplectomorphism
Pγ : f −1(γ(0))→ f −1(γ(0)) is isotopic through symplectomorphisms to a
symplectic Dehn twist in the vanishing cycle associated to δ.

It would help if we knew what a symplectic Dehn twist was. For now I’ll
just say what it is when the real dimension of the fibre is 2.
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A Lagrangian sphere L in a symplectic 2-manifold is just a circle. A
neighbourhood of a Lagrangian circle is an annulus [−ε, ε]× S1, equipped
(say) with the symplectic form dx ∧ dθ. The diffeomorphism

DT (x , θ) = (x , θ + k(θ))

for a smooth step function k : [−ε, ε]→ [0, 2π] (equal to 0 for x < −ε/2,
2π for x > ε/2 and equal to π at x = 0) is called a Dehn twist. It’s
compactly supported and preserves the symplectic form. It acts as the
antipodal map on the Lagrangian sphere we’re twisting (x = 0). Rulings of
the annulus get wrapped around the circle direction by DT . The action on
first homology is clearly

[a] 7→ [a] + ([a] · [L])[L]

since for every intersection with multiplicity m between a and L you wrap
a m times around L. Note that negative intersections get wrapped
negatively!

Jonathan Evans () Lecture X: Picard-Lefschetz II 25th November 2010 17 / 20



In higher dimensions there is a similar construction but it’s harder to write
down. If you want to see the formula defining the Dehn twist, go and look
at Paul Seidel’s highly readable “Lectures on four-dimensional Dehn
twists” (which you should read anyway because it’s very beautiful). The
essential properties are:

It’s a compactly-supported symplectomorphism of T ∗Sn,

It acts as the antipodal map on the zero-section,

By Weinstein’s neighbourhood theorem it can be implanted into any
symplectic manifold containing a Lagrangian sphere and acts
middle-homologically (Mayer-Vietoris!) by the beautiful formula

[a] 7→ [a] + ([a] · [L])[L]

Note that when L is an n-sphere (n even) Weinstein implies [L]2 = −2 and
hence the squared Dehn twist acts trivially on homology. When n is odd,
[L]2 = 0 so either [L] is nullhomologous and the Dehn twist acts trivially
on homology or else a class with [a] · [L] 6= 0 gets translated in the
[L]-direction by iterated Dehn twists (as happens for a homologically
essential circle in a surface, for example).
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If I had more time I would prove the theorem. Instead I’ll refer to section 1
of Seidel’s gorgeous but detailed “A long exact sequence for symplectic
Floer cohomology”. In essence it’s just a local computation in the model
near the singularity and you could do it yourselves (given enough patience
and paper).
Instead I’ll finish with an example.

Example (The Milnor fibre)

Everyone’s favourite Lefschetz fibration:
f : {z2

1 + · · ·+ z2
n−1 + p(zn) = 0} ⊂ Cn → C defined by projection to the

zn-coordinate, where p is a polynomial of degree d with distinct roots.
The critical points are zeros of p so there are d of them. The general fibre
is an affine quadric surface

z2
1 + · · ·+ z2

n−1 = c

i.e. a copy of T ∗Sn−2.
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Example (Milnor fibre continued)

You can very explicitly see these Lagrangian zero-sections being contracted
to points as you move along lines between zeros of p (perhaps easiest if
you take all roots to be real). Notice that all the vanishing cycles are
isotopic to the zero-section. This has the interesting consequence that you
can take the union of vanishing cycles over a vanishing path connecting
two singular points and you trace out a Lagrangian sphere in the total
space. This construction (the matching cycle construction) needs some
care to describe properly but is extraordinarily useful. In fact the total
space of this Lefschetz fibration deformation retracts onto the union of a
collection of Lagrangian spheres: matching cycles for a chain of (disjoint
away from their endpoints) paths connecting the critical points in some
order.
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