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Difficulty of exercises is denoted by card suits in increasing order ♦ ♥ ♠ ♣.
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This course is about symplectic topology by which I mean global problems
in symplectic geometry. In the same way that Riemannian geometry
studies manifolds with a positive-definite quadratic form on their tangent
bundle, symplectic geometry studies manifolds with a nondegenerate
alternating 2-form on their tangent bundle.

Example

The 2-form
ω0 = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

is an alternating 2-form on the vector space R2n with coordinates

(x1, . . . , xn, y1, . . . , yn). If we write V =

(
v1
v2

)
, W =

(
w1

w2

)
,

ω0 =

(
0 id
−id 0

)
then

ω0(V ,W ) = V Tω0W
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More precisely

Definition

A symplectic manifold is a pair (X , ω) where ω is a nondegenerate 2-form
on X which is closed (dω = 0).

To understand why we require dω = 0, we make an analogy with complex
manifolds.
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Complex manifolds

Definition

A complex manifold is a manifold with charts φi : Ui → Cn and C1-smooth
transition maps φij : Cn → Cn whose derivatives are complex linear
dφij ∈ GL(n,C).

On each tangent space (say Tx where x ∈ Uk) we have an endomorphism

J = (dφk)−1J0(dφk) : Tx → Tx

which is well-defined independently of the chart (since transition functions
are C-linear).

Definition

An almost complex structure (a.c.s.) on a manifold X is an endomorphism
J : TX → TX such that J2 = −1.
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A complex manifold therefore comes with a special almost complex
structure, but not every almost complex structure arises this way. Define
the Nijenhuis tensor

NJ(V ,W ) = [JV , JW ]− [V ,W ]− J[JV ,W ]− J[V , JW ]

where V ,W are vector fields and J is an almost complex structure on X .
We say that J is integrable if NJ ≡ 0.

Exercise

♦ : Show this is a tensor, i.e.
NJ(fU + gV ,W ) = fNJ(U,W ) + gNJ(V ,W )... Check that it vanishes for
the standard complex structure on Cn. Since the a.c.s. of a complex
manifold comes from pulling back the a.c.s. on Cn, deduce that this
implies the natural a.c.s. on a complex manifold is integrable.

Theorem (Newlander-Nirenberg)

Let (X , J) be an almost complex manifold. There exists an complex
manifold atlas of X for which J is the associated almost complex structure
if and only if J is integrable.
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Symplectic manifolds

Definition

A symplectic manifold is a manifold with charts φi : Ui → R2n and
C1-smooth transition maps φij : R2n → R2n whose derivatives are
symplectic i.e. dφij ∈ Sp(2n) where

Sp(2n) = {A ∈ GL(2n,R) : ω0(AV ,AW ) = ω0(V ,W )}
= {A : ATω0A = ω0}

One can pullback the 2-form ω0 from R2n on each chart and the condition
on transition functions ensure these pullbacks patch together and give a
globally well-defined nondegenerate 2-form ω.
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However, not all nondegenerate 2-forms arise this way. Since exterior
differentiation commutes with pullback and dω0 = 0, it is clear that
dω = 0 also. In fact we will see as a consequence of Darboux’s Theorem
that...

Theorem

Let ω be a nondegenerate 2-form on X . There exists a symplectic manifold
atlas of X for which ω is the associated 2-form if and only if dω = 0.

This is much easier to prove than the Newlander-Nirenberg Theorem.
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In Riemannian geometry the analogous integrability condition would
be vanishing Riemannian curvature. But flat manifolds are finite
quotients of tori (Bieberbach theorem) so Riemannian geometry only
becomes interesting when you throw in curvature.

The space of Riemannian metrics modulo diffeomorphisms is
something vast and incomprehensible (see Weinberger-Nabutovsky)
and existence questions for global objects like geodesics or minimal
submanifolds become hard analysis problems.

By contrast in symplectic geometry there are no local invariants like
curvature. The moduli space of symplectic forms modulo
diffeomorphism is actually a finite-dimensional (noncompact)
manifold - though it is only known for very few manifolds.
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Why?

We’ve seen where symplectic geometry lives. Now let’s see why we care.
Here are some examples of symplectic manifolds:

Surfaces with area forms,

Kähler manifolds - living at the intersection of complex and
symplectic geometry; we’ll come to these later,

Phase spaces in classical dynamics,

Gauge theoretic moduli spaces.
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Kähler manifolds

Complex and symplectic geometry interact. Notice that the Euclidean
metric on R2n is obtained from ω0 and J0 as follows:

g(·, ·) = ω0(·, J0·)

Definition

An a.c.s. J is said to be ω-compatible if g(·, ·) = ω(·, J·) is
positive-definite and J-invariant, i.e.

g(J·, J·) = g(·, ·)

If we require J to be integrable and ω-compatible then we find ourselves in
the land of Kähler manifolds.
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Definition

A Kähler manifold is a manifold X with a symplectic form ω and an
ω-compatible integrable almost complex structure J.

This is a lot of structure and there are many examples of Kähler
manifolds. This makes them extremely popular. The Kähler condition also
imposes subtle constraints on the topology of the underlying manifold. For
example, Carlson and Toledo have shown that if a group G occurs as
π1(M) for a hyperbolic n ≥ 3-manifold M then it is not the fundamental
group of a Kähler manifold.

Example

Complex projective space CPn admits a famous Kähler structure called the
Fubini-Study structure. Since any smooth subvariety of a Kähler manifold
inherits a Kähler structure, any smooth complex (even quasi)-projective
variety is a Kähler manifold (in particular a symplectic manifold).
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The symplectic manifold underlying a complex projective variety sees
a lot of useful things. For example, if we degenerate the variety to a
nodal one then we do so by collapsing parts of it to points. In
algebraic geometry all you see are cohomology classes being killed
(“vanishing cohomology”) but in symplectic geometry we can pick
out a distinguished isotopy class of submanifolds which get crushed.

The symplectic forms vanish on them (which is why we can crush
them to points) so they give interesting global objects (called
Lagrangian submanifolds) visible to algebraic geometry only in the
transcendental world where you know about the symplectic form. The
result is a subtle geometric version of the classical Picard-Lefschetz
theory (which was only about homology).
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Dynamical examples

Symplectic structures also occur naturally in classical dynamics.
Hamilton’s equations take a function H(q, p) of position (q) and

momentum (p) e.g. H(q, p) = p2

2m + V (q) and turn it into a vector
(q̇, ṗ) whose flow describes time-evolution of the system. This vector
is

(q̇, ṗ) = (∂H/∂p,−∂H/∂q)

which clearly only depends on the derivatives of H, i.e. on dH.

So we’ve taken a 1-form and obtained a vector. This comes from a
nondegenerate bilinear form on tangent spaces (just like the musical
isomorphism in Riemannian geometry comes from the metric).
However, by inspection, the pairing we need is ω0.
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We can see this in one of two ways.

1 Either symplectic manifolds provide a more general framework for
doing Hamiltonian dynamics (nonlinear phase spaces),

2 Or one can use techniques of Hamiltonian mechanics on symplectic
manifolds. For example, flowing along the vector fields you get from a
Hamiltonian function gives symmetries of the symplectic manifold.

Apart from this, the symplectic point of view is useful for proving certain
things in dynamics, e.g. existence of periodic orbits of Hamiltonian
systems. I won’t talk much about this, but those interested can go and
read the book of Hofer and Zehnder.
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Aside from classical dynamics, symplectic manifolds also provide a
natural language for talking about quantisation. We’ll also avoid
talking about this. Everyone who’s done QM knows how to quantise
cotangent bundles. For harder QFT one needs to quantise
infinite-dimensional symplectic manifolds but sometimes this can be
reduced to a finite-dimensional symplectic manifold.

For example, Chern-Simons theory arises by “quantising the space of
connections on a 2-d surface” (which is a symplectic manifold) but it
can be “symplectically reduced” to the finite-dimensional moduli
space of flat connections. These spaces of flat connections are very
interesting symplectic manifolds and via Chern-Simons theory they
have a link to low-dimensional topology where their symplectic
topology is extremely relevant. Interested readers should consult the
little knot book by Atiyah.
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Moreover, one is often interested in 3-manifold invariants which count
flat connections. If you have a 3-manifold M bounding a 2-manifold
Σ then the space of flat connections on Σ which extend to flat
connections over M is a Lagrangian submanifold of the (symplectic)
moduli space of flat connections. Gluing a 3-manifold out of two
3-manifolds with the same boundary and trying to count flat
connections on the glued manifold is therefore like intersecting the
corresponding Lagrangians.

This point of view led to new invariants in low-dimensional topology
(Heegaard-Floer groups) which have been enormously successful. The
original picture is still conjectural and goes by the name of the
Atiyah-Floer conjecture.
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So we see there are many interesting symplectic manifolds, relevant for
dynamics, gauge theory, algebraic geometry. I will now up the pace and
start talking about some things we’ll prove and some techniques we’ll use.
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What really singles symplectic geometry out from complex or
Riemannian geometry is the infinite-dimensional group of
diffeomorphisms (symplectomorphisms) which preserve a given
symplectic form (in contrast to the finite-dimensional group of
isometries or complex automorphisms). It makes global questions
seem quite flabby and topological.

For example, one can take a global object (like a Lagrangian
submanifold, a submanifold on which ω vanishes) and push it around
under the symplectomorphism group to get an infinite-dimensional
space of other objects.

To understand just how ‘topological’ symplectic topology is in this
sense one needs to understand how the symplectomorphism group sits
inside the diffeomorphism group.
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We will see that the symplectomorphism group is relatively small in the
following sense.

Theorem (Eliashberg’s rigidity theorem)

If φk is a sequence of symplectomorphisms of (X , ω) which converge to a
diffeomorphism φ in the C0-topology then φ is a symplectomorphism.

So we can’t approximate non-symplectic diffeomorphisms by C0-close
symplectomorphisms. This is clear if we use the C1-topology because we
then have control over φ∗ω in the limit. But the stated theorem is far
from obvious. It proof will involve pseudoholomorphic curves and will be
essentially equivalent to the following theorem of Gromov.
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Theorem (Gromov’s nonsqueezing theorem)

Let B2n(r) denote the radius r ball inside the standard symplectic R2n.
Then if there is a symplectic embedding

B2n(r)→ B2(R)× R2n−2

we must have
r ≤ R.

It is true in general that a symplectic manifold admits a volume form ωn

and symplectic embeddings preserve volume. Gromov’s theorem says that
symplectic maps preserve some other more subtle “2-dimensional”
quantity and it is this property (which makes no reference to derivatives of
symplectic maps) which is preserved under C0-limits, allowing you to
deduce rigidity.
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Gromov’s nonsqueezing theorem was proved using the theory of
pseudoholomorphic curves which we will now discuss. This is the main
tool for practising symplectic topologists and will hopefully become the
eventual focus of this course.
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Pseudoholomorphic curves

My favourite invariants of symplectic manifolds were invented in a
1985 paper of Gromov.

In a complex manifold one is very interested in the complex
submanifolds, that is those whose tangent spaces are preserved by the
almost complex structure. These occur in finite-dimensional families,
for example, in the complex projective plane there is a unique
complex line through any pair of points, a unique smooth conic
through any five points in general position,...

Gromov noticed that even if one relaxes the integrability condition on
the complex structure this finite-dimensionality of moduli spaces
carries through and one can hope to develop a theory of
pseudoholomorphic curves in almost complex manifolds.
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Unfortunately that theory is not easy unless there is a compatible
symplectic form: with a symplectic form one obtains area bounds on
pseudoholomorphic curves in a fixed homology class and that allows
one to prove Gromov’s Compactness Theorem, which tells us how
limits of sequences of pseudoholomorphic curves degenerate.

This compactness is vital for giving us finite answers when we ask
questions like “how many J-holomorphic curves are there in a
particular homology class through a fixed set of points?”.

But with a fixed symplectic form such questions have answers which
are independent of the compatible almost complex structure. These
answers are called the Gromov or Gromov-Witten invariants (slightly
different invariants for slightly different purposes).
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Pseudoholomorphic curve theory gives us an enormous amount of
information about symplectic manifolds. We will hopefully see many
examples of this throughout the course. But for a start, let’s see what
they can’t tell us.

Theorem (Taubes)

The Gromov invariants of a symplectic 4-manifold with b+ > 1 are
determined by the diffeomorphism type of the 4-manifold.

So we can’t use Gromov invariants to distinguish diffeomorphic
non-symplectomorphic 4-manifolds.
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But Taubes’s theorems are much deeper than the one stated above.
Taubes actually completely describes the Gromov invariants of
symplectic 4-manifolds in terms of the Seiberg-Witten invariants of
the underlying smooth 4-manifold and moreover shows that they are
non-vanishing for some explicit homology classes. These are
diffeomorphism invariants which we will hopefully see later in the
course.

This is great for low-dimensional topologists, because the SW
invariants are essentially all they have and now they have a whole
class of manifolds with nonvanishing SW invariants.
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Applications in low-dimensional topology

For example, D8 = CP2#− 8CP2 (the 8-point blow-up of CP2) is
homeomorphic to a surface of general type called Barlow’s surface1. The
former has lots of holomorphic curves in homology classes with
self-intersection −1. The latter (let’s call it B) doesn’t. This leads to their
having different Gromov invariants and hence different Seiberg-Witten
invariants (therefore they’re not diffeomorphic).

1By Freedman’s Theorem, 4-manifolds are basically classified up to
homeomorphism by their cohomology ring.
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Taubes’s theory also lets one prove theorems like

Theorem (Taubes)

There is a unique symplectic structure on CP2.

Theorem (Liu-Li)

Let Dk denote the k-point blow-up of CP2 for 2 ≤ k ≤ 8. Then there’s a
unique symplectic structure up to diffeomorphism and deformation
equivalence on Dk . In particular all symplectic structures on Dk have

c1(ω) · [ω] ≥ 0

where c1(ω) denotes the first Chern class (we’ll meet it next lecture).
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This gives a possible direction for constructing smoothly exotic Dks, i.e.
manifolds homeomorphic but not diffeomorphic to a rational surface: look
for symplectic manifolds with the same homology as Dk but with
c1(ω) · [ω] < 0. This is called reverse engineering of small exotic
4-manifolds and works down as far as k = 3 (Fintushel-Stern).
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This course will cover a hitherto undetermined strict (measure 0) subset of
this material.
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Some interesting reading: two articles where Marcel Berger surveys the
works of Gromov including a section on the discovery of
pseudoholomorphic curves; one article on just how complicated the moduli
space of Riemannian metrics is; Hofer-Zehnder book on symplectic
geometry and dynamics; Atiyah’s book on knots.

Berger, Marcel (Feb 2000). “Encounter with a Geometer, Part I”.
Notices of the AMS 47 (2): 183–194.
http://www.ams.org/notices/200002/fea-berger.pdf.

Berger, Marcel (Mar 2000). “Encounter with a Geometer, Part II”.
Notices of the AMS 47 (3): 326–340.
http://www.ams.org/notices/200003/fea-berger.pdf.

Alexander Nabutovsky and Shmuel Weinberger “The fractal nature of
Riem/Diff I”, Geom. Dedicata 101(2003), 1–54. (available on
Nabutosvky’s webpage in PS format)

Hofer, H. and Zehnder, E. “Symplectic invariants and Hamiltonian
dynamics”, Birkhäuser (1994)

Atiyah, M. “The Geometry and Physics of Knots”, Cambridge
University Press (1990)
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