Many Particle Systems

James Burnett

Mathematics Department University College London

1st May

・ロト ・回ト ・ヨト ・ヨト

Introduction

The Black Box

Master Equation Second Quantization

SDE

Its Form Solving the SDE

Results

Numerically

The Future

▲ 御 ▶ → ミ ▶

- < ≣ →

The Classical Problem

- Classical rate equations fail in the limit of relatively small finite particle populations.
- Our investigations start with the reaction $A + A \rightarrow A$.
- ► We only have one species of particle whose population after some time T_f will reach 1.

イロト イヨト イヨト イヨト

The Rate Equation

For $A + A \rightarrow A$ we use the Smoluchowski equation.

James Burnett Many Particle Systems

・ロン ・回 と ・ ヨ と ・ モ と

The Rate Equation

・ロン ・回 と ・ ヨン・

The Rate Equation

- For $A + A \rightarrow A$ we use the Smoluchowski equation.
- $\frac{dc}{dt} = -\kappa c^2$
- c is the mean particle population and κ is the rate coefficient
- In the "thermodynamic limit" i.e where populations are large and fluctuations are relatively small; (φ²) ≈ (φ)², c = (φ).

Master Equation Second Quantization

The Master Equation

First we must write a master equation for this reaction.

 ^{dP(N,t)}/_{dt} = ^κ/_{2V}[(N+1)NP(N+1,t) − N(N-1)P(N,t)]

Master Equation Second Quantization

Second Quantization

 We create a Hilbert Space, with the usual notion of annihilation and creation operators.

イロト イヨト イヨト イヨト

Master Equation Second Quantization

Second Quantization

- We create a Hilbert Space, with the usual notion of annihilation and creation operators.
- We define a wave equation to describe our system for any given time and write down the evolution operator, the Hamiltonian.

Master Equation Second Quantization

Second Quantization

- We create a Hilbert Space, with the usual notion of annihilation and creation operators.
- We define a wave equation to describe our system for any given time and write down the evolution operator, the Hamiltonian.
- We can then formulate an observable and its expectation value, this is the population and its expected value.

Master Equation Second Quantization

Second Quantization

- We create a Hilbert Space, with the usual notion of annihilation and creation operators.
- We define a wave equation to describe our system for any given time and write down the evolution operator, the Hamiltonian.
- We can then formulate an observable and its expectation value, this is the population and its expected value.
- Finally using path integral formalism we are able to extract a Stochastic Differential Equation (SDE).

Its Form Solving the SDE

Our SDE from the black box

$$\blacktriangleright \partial_t \bar{\Phi}(t) = -\bar{\kappa} \bar{\Phi}^2(t) + i\eta \sqrt{2\bar{\kappa}} \bar{\Phi}$$

< □ > < □ > < □ > < □ > < □ > .

Its Form Solving the SDE

Our SDE from the black box

$$\bullet \ \partial_t \bar{\Phi}(t) = -\bar{\kappa} \bar{\Phi}^2(t) + i\eta \sqrt{2\bar{\kappa}} \bar{\Phi}$$

< □ > < □ > < □ > < □ > < □ > .

Its Form Solving the SDE

Our SDE from the black box

$$\blacktriangleright \partial_t \bar{\Phi}(t) = -\bar{\kappa} \bar{\Phi}^2(t) + i\eta \sqrt{2\bar{\kappa}} \bar{\Phi}$$

▶
$$\Phi(t) \in \mathbb{C}$$
 .

< □ > < □ > < □ > < □ > < □ > .

Its Form Solving the SDE

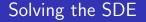
Our SDE from the black box

$$\blacktriangleright \partial_t \bar{\Phi}(t) = -\bar{\kappa} \bar{\Phi}^2(t) + i\eta \sqrt{2\bar{\kappa}} \bar{\Phi}$$

- The
 η is a "white noise".
- ▶ $\Phi(t) \in \mathbb{C}$.
- Where we are interested in $\langle \Phi(t) \rangle$.

・ロト ・回ト ・ヨト ・ヨト

Its Form Solving the SDE

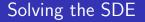


There are two main methods;

► Analytically: Here we use Itô calculus to construct a solution.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Its Form Solving the SDE



There are two main methods;

- ► Analytically: Here we use Itô calculus to construct a solution.
- Numerically: Using a sequence of random numbers to create a Wiener process and implementing it in an iterative method.
 We then average over a large number of runs.

Its Form Solving the SDE

Analytically

Using Itô calculus gives us

James Burnett Many Particle Systems

◆□ → ◆□ → ◆ □ → ◆ □ → ·

Its Form Solving the SDE

Analytically

 Using Itô calculus gives us
 Φ(t) = Φ₀exp(κt+i√2κW(t)) 1+κΦ₀ ∫₀^t exp(κs+i√2κW(s))ds

Its Form Solving the SDE

Numerically

A Wiener process can be defined as such, W(0) = 0 w.p.1, E(W(t)) = 0 and finally Var(W(t) − W(s)) = t − s

イロト イヨト イヨト イヨト

Its Form Solving the SDE

Numerically

- A Wiener process can be defined as such, W(0) = 0 w.p.1, E(W(t)) = 0 and finally Var(W(t) − W(s)) = t − s
- We can construct something very similar by dividing our time interval into equal length sub intervals. ^{t_i}/_N

イロト イヨト イヨト イヨト

Its Form Solving the SDE

Numerically

- A Wiener process can be defined as such, W(0) = 0 w.p.1, E(W(t)) = 0 and finally Var(W(t) − W(s)) = t − s
- We can construct something very similar by dividing our time interval into equal length sub intervals. ^{t_i}/_N
- We then generate a list of gaussian random numbers, $\{X_1, X_2, ..., X_N\}$ with $\mu = 0$.

イロン イヨン イヨン イヨン

Its Form Solving the SDE

Numerically

- A Wiener process can be defined as such, W(0) = 0 w.p.1, E(W(t)) = 0 and finally Var(W(t) − W(s)) = t − s
- We can construct something very similar by dividing our time interval into equal length sub intervals. ^{t_i}/_N
- We then generate a list of gaussian random numbers, $\{X_1, X_2, ..., X_N\}$ with $\mu = 0$.
- ► Then we sum these numbers such that $S_N(t_n^{(n)}) = (X_1 + X_2 + ... + X_n)\sqrt{\Delta t}$

イロン イヨン イヨン イヨン

Its Form Solving the SDE

Numerically

- A Wiener process can be defined as such, W(0) = 0 w.p.1, E(W(t)) = 0 and finally Var(W(t) − W(s)) = t − s
- We can construct something very similar by dividing our time interval into equal length sub intervals. ^{t_i}/_N
- We then generate a list of gaussian random numbers, $\{X_1, X_2, ..., X_N\}$ with $\mu = 0$.
- ► Then we sum these numbers such that $S_N(t_n^{(n)}) = (X_1 + X_2 + ... + X_n)\sqrt{\Delta t}$
- ▶ It has been shown that $Var(S_N(t) S_N(s)) \rightarrow t s$ as $N \rightarrow \infty$

(日) (同) (E) (E) (E) (E)

Its Form Solving the SDE

Iterative Method

> This can then be used to solve the following form of our SDE

James Burnett Many Particle Systems

< □ > < □ > < □ > < □ > < □ > .

Its Form Solving the SDE

Iterative Method

- This can then be used to solve the following form of our SDE
- $d\Phi(t) = -\kappa \Phi^2(t) dt + i \sqrt{(2\kappa)} \Phi(t) dW$
- Where $dW = \eta dt$.

Outline Introduction The Black Box Results

Numerically

The Future

Single Projection of $\operatorname{Re}(\Phi(t))$

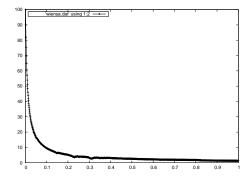


Figure: The real part of a single realisation of the solution to the SDE

Outline Introduction The Black Box Results

Numerically

The Future

Single Projection of $Im(\Phi(t))$

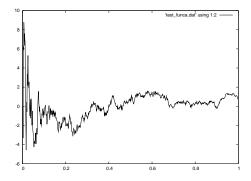


Figure: The real part of a single realisation of the solution to the SDE

Numerically

$\operatorname{Re}(\langle \Phi(t) \rangle)$

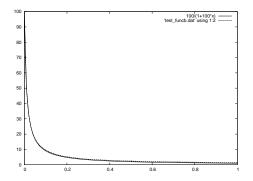


Figure: The real part of a single realisation of the solution to the SDE

Numerically

$\operatorname{Im}(\langle \Phi(t) \rangle)$

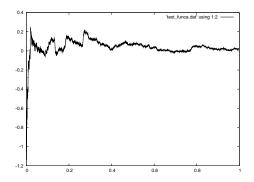


Figure: The real part of a single realisation of the solution to the $SDE = -9 \circ c$

What I would like to move onto next;

 To calculate a reaction where a single "super" dust particle forms.

< □ > < □ > < □ > < Ξ > < Ξ > ...

What I would like to move onto next;

- To calculate a reaction where a single "super" dust particle forms.
- ▶ Is it possible to show that $Im(\langle \Phi(t) \rangle) = 0$ for all time?