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The Classical Problem

I Classical rate equations fail in the limit of relatively small
finite particle populations.

I Our investigations start with the reaction A + A → A.

I We only have one species of particle whose population after
some time Tf will reach 1.
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The Rate Equation

I For A + A → A we use the Smoluchowski equation.

I dc
dt = −κc2

I c is the mean particle population and κ is the rate coefficient

I In the “thermodynamic limit” i.e where populations are large
and fluctuations are relatively small; 〈φ2〉 ≈ 〈φ〉2, c = 〈φ〉.
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The Master Equation

I First we must write a master equation for this reaction.

I dP(N,t)
dt = κ

2V [(N + 1)NP(N + 1, t)− N(N − 1)P(N, t)]
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Second Quantization

I We create a Hilbert Space, with the usual notion of
annihilation and creation operators.

I We define a wave equation to describe our system for any
given time and write down the evolution operator, the
Hamiltonian.

I We can then formulate an observable and its expectation
value, this is the population and its expected value.

I Finally using path integral formalism we are able to extract a
Stochastic Differential Equation (SDE).
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Our SDE from the black box

I ∂tΦ̄(t) = −κ̄Φ̄2(t) + iη
√

2κ̄Φ̄

I The η is a “white noise”.

I Φ(t) ∈ C .

I Where we are interested in 〈Φ(t)〉.
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Solving the SDE

There are two main methods;

I Analytically: Here we use Itô calculus to construct a solution.

I Numerically: Using a sequence of random numbers to create a
Wiener process and implementing it in an iterative method.
We then average over a large number of runs.
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Analytically

I Using Itô calculus gives us

I Φ(t) = Φ0exp(κt+i
√

2κW (t))

1+κΦ0

R t
0 exp(κs+i

√
2κW (s))ds
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Numerically

I A Wiener process can be defined as such, W (0) = 0 w.p.1,
E (W (t)) = 0 and finally Var(W (t)−W (s)) = t − s

I We can construct something very similar by dividing our time
interval into equal length sub intervals. ti

N

I We then generate a list of gaussian random numbers,
{X1,X2, ...,XN} with µ = 0.

I Then we sum these numbers such that
SN(t

(n)
n ) = (X1 + X2 + ... + Xn)

√
∆t

I It has been shown that Var(SN(t)− SN(s)) → t − s as
N →∞
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Iterative Method

I This can then be used to solve the following form of our SDE

I dΦ(t) = −κΦ2(t)dt + i
√

(2κ)Φ(t)dW

I Where dW = ηdt.
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Figure: The real part of a single realisation of the solution to the SDE
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Single Projection of Im(Φ(t))

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

’test_funca.dat’ using 1:2

Figure: The real part of a single realisation of the solution to the SDE
James Burnett Many Particle Systems



Outline
Introduction

The Black Box
SDE

Results
The Future

Numerically

Re(〈Φ(t)〉)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.2  0.4  0.6  0.8  1

100/(1+100*x)
’test_funcb.dat’ using 1:2

Figure: The real part of a single realisation of the solution to the SDE
James Burnett Many Particle Systems



Outline
Introduction

The Black Box
SDE

Results
The Future

Numerically

Im(〈Φ(t)〉)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1

’test_funca.dat’ using 1:2

Figure: The real part of a single realisation of the solution to the SDE
James Burnett Many Particle Systems



Outline
Introduction

The Black Box
SDE

Results
The Future

A + B → C

What I would like to move onto next;

I To calculate a reaction where a single “super” dust particle
forms.

I Is it possible to show that Im(〈Φ(t)〉) = 0 for all time?
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