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The Classical Problem

I We are for the purposes of this talk interested in the reaction
A + A → A

I We start with a large, but finite number of dust particles.

I After a finite time they all react leaving us with a single
particle.
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How To Model This

I The usual rate equation for this reaction is the Smoluchowski
equation.

I dc
dt = −κc2

I c is the mean particle population and κ is the rate coefficient
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Why Doesn’t This Work?

I The Smoluchowski equation is only valid in the
thermodynamic limit.

I When our particle population starts to fall rapidly we are no
longer in this limit.

I This gives odd and unrealistic results when modelling.
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The Master Equation

I First we must write a master equation for this reaction.

I dP(N,t)
dt = κ

2V [(N + 1)NP(N + 1, t)− N(N − 1)P(N, t)]

I Then we embark on obscure and lengthy process of second
quantization.
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Second Quantization

I We create a Hilbert Space, with the usual notion of
annihilation and creation operators.

I We define a wave equation to describe our system for any
given time
|Ψ〉A+A→A :=

∑
N P(N, t)(a+)N |0〉

I We can then write down the evolution operator,
HA+A→A[a+, a−] = − κ

2V (a+ − a+2
)a−

2
,

that satisfies the imaginary time Schödinger equation.
d
dt |Ψ〉A+A→A = −HA+A→A[a+, a−]|Ψ〉A+A→A
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The Black Box

I The next stage is to define a general observable.

I Write down the full expression of the expectation value of this
observable

I We then split the time into small compartments, rearrange
and finally convert it to a continous system.

I This leaves us with a Path Integral to solve.

I Solving this partly gives us a constraint equation which looks
identical to the original Smoluchowski equation with an
additional term.
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The Final Result

I ∂tΦ̄(t) = −κ̄Φ̄2(t) + iη
√

2κ̄Φ̄

I The η represents a white noise, which when a simulation is
down it should be averaged over.

I Φ(t) is the now complex population variable.

I Taking the averaging over several noises and only looking at
the real part of Φ gives a matching to the results expected
from Monte Carlo Simultions.
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I The next step is to calculate a reaction where a single “super”
dust particle forms.

I Maybe we will find a general form of the complex noise term.

I Is it possible to show that if we average over the complex
term an infinite number of times the Im(Φ(t)) → 0?
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