Dark Matter Spinors With Torsion

James Burnett
j.burnett@ucl.ac.uk
UK Cosmo, Cambridge

J. Burnett, C. G. Böhmer
arXiv:TBA

10 April 2008
Outline

• What are Dark Spinors?
• Einstein-Cartan Theory
• Cosmological Field Equations
• Cosmological Dynamics
Outline

- What are Dark Spinors?
Outline

- What are Dark Spinors?
- Einstein-Cartan Theory
Outline

- What are Dark Spinors?
- Einstein-Cartan Theory
- Cosmological Field Equations
Outline

- What are Dark Spinors?
- Einstein-Cartan Theory
- Cosmological Field Equations
- Cosmological Dynamics
Dark Spinors

- Dark spinors are eigenspinors of the Charge Conjugation Operator.
- Important properties include:
 - Double helicity structure compared to Dirac spinors
 - Spin 1/2 but mass dimension 1
 - They satisfy the Klein-Gordon Equation.
Dark Spinors

- Dark spinors are eigenspinors of the Charge Conjugation Operator.
Dark Spinors

- Dark spinors are eigenspinors of the Charge Conjugation Operator.

- Important properties include
 - Double helicity structure compared to Dirac spinors
 - Spin 1/2 but mass dimension 1
 - They satisfy the Klein-Gordon Equation.
What Do They Look Like?
What Do They Look Like?

- $\lambda = \begin{pmatrix} \pm \sigma_2 \phi^* \phi_L \\ \phi_L \end{pmatrix}$,
What Do They Look Like?

- \[\lambda = \begin{pmatrix} \pm \sigma_2 \phi^*_L \\ \phi_L \end{pmatrix}, \]

- Need a different definition for the dual in order to have a consistent field theory.
 \[\overline{\lambda}_u = i \varepsilon^v_u \lambda^\dagger_v \gamma^0, \]
What Do They Look Like?

- $\lambda = \begin{pmatrix} \pm \sigma_2 \phi^*_L \\ \phi_L \end{pmatrix}$,

- Need a different definition for the dual in order to have a consistent field theory. $\lambda^*_u = i \varepsilon^v_u \lambda^{\dagger}_v \gamma^0$,

- This then gives the relation $\lambda^*_u(p) \lambda_v(p) = \pm 2m \delta_{uv}$,
What Do They Look Like?

• $\lambda = \left(\pm \sigma_2 \phi^*_L \right)$,

• Need a different definition for the dual in order to have a consistent field theory.
 $\tilde{\lambda}_u = i \epsilon^v_u \lambda_v^\dagger \gamma^0$,

• This then gives the relation $\tilde{\lambda}_u(p)\lambda_v(p) = \pm 2m \delta_{uv}$,

• Dark spinors are an excellent candidate for dark matter as they only couple to the Higgs mechanism.
Einstein-Cartan Theory

In Einstein-Cartan theory an additional fundamental tensor has been added namely Torsion. This yields a richer framework and allows extra coupling for the Dark spinors. Working with anholonomic indices:

\[\tilde{\nabla}^a \lambda = \partial^a \lambda - \frac{1}{4} \Gamma^{abc \gamma}_{b \gamma c \lambda} + \frac{1}{4} K^{abc \gamma}_{b \gamma c \lambda}, \]
Einstein-Cartan Theory

- In Einstein-Cartan theory an additional fundamental tensor has been added namely Torsion.
Einstein-Cartan Theory

- In Einstein-Cartan theory an additional fundamental tensor has been added namely Torsion.

- This yields a richer framework and allows extra coupling for the Dark spinors.
Einstein-Cartan Theory

- In Einstein-Cartan theory an additional fundamental tensor has been added namely Torsion.

- This yields a richer framework and allows extra coupling for the Dark spinors.

- Working with anholonomic indices.
Einstein-Cartan Theory

- In Einstein-Cartan theory an additional fundamental tensor has been added namely Torsion.

- This yields a richer framework and allows extra coupling for the Dark spinors.

- Working with anholonomic indices.

- \[\tilde{\nabla}_a \lambda = \partial_a \lambda - \frac{1}{4} \Gamma_{abc} \gamma^b \gamma^c \lambda + \frac{1}{4} K_{abc} \gamma^b \gamma^c \lambda , \]
Contortion

\[\tilde{R}_{ij} - \frac{1}{2} \tilde{R}_{\eta \eta} = \kappa \Sigma_{ij}, \]
\[S_{ijk} + \delta_{i k} S_{jll} - \delta_{j k} S_{ill} = \kappa \tau_{ijk}. \]

- Each of the Riemann quantities are computed from the full connection, which includes torsion.
Contortion

- We consider the Einstein-Hilbert action.
Contortion

• We consider the Einstein-Hilbert action.

• Varying with respect to the contortion (tortion) tensor gives us extra Field Equations.

\[\tilde{R}_{ij} - \frac{1}{2} \tilde{R} \eta_{ij} = \kappa \Sigma_{ij}, \]

\[S^{ij}_k + \delta^i_k S^j_l - \delta^j_k S^i_l = \kappa \tau^{ij}_k. \]

• Each of the Riemann quantities are computed from the full connection, which includes torsion.
Cosmological Principle

- On large scales the universe is isotropic and homogenous.

- Thus there are certain constraints that need to be implemented on the metric and the torsion tensor.

\[\mathcal{L}_\xi g_{\mu\nu} = 0, \quad \mathcal{L}_\xi S_{\mu\nu}^\lambda = 0 \]

- This leaves only two independent components of the torsion tensor.

\[T_{110} = T_{220} = T_{330} = h(t) \]
\[T_{123} = T_{312} = T_{231} = f(t) \]
Field Equations

We can solve for these unknown functions using the second field equation.

\[
\dot{\phi}(t) = -\sqrt{\kappa V} \sqrt{\frac{4}{3} + \frac{\kappa^2 \phi^4(t)}{4 - \kappa^2 \phi^4(t)}}
\]

Finally solving these gives Hubble's parameter.

\[
H(t) = \frac{\dot{a}}{a} = \sqrt{\frac{V \kappa^2}{\sqrt{3} \sqrt{(4 + \kappa^2 \phi^4(t))}}} \sqrt{\frac{4}{3} - \kappa^2 \phi^4(t)}
\]
Field Equations

- We can solve for these unknown functions using the second field equation.
Field Equations

- We can solve for these unknown functions using the second field equation.

\[
\frac{\dot{\phi}(t)}{\phi(t)} = -\frac{\sqrt{\kappa V}}{4\sqrt{3}} \frac{8 + 3\kappa^2 \phi^4}{12 - \kappa^2 \phi^4} \sqrt{4 - \kappa^2 \phi^4}
\]
Field Equations

• We can solve for these unknown functions using the second field equation.

\[
\frac{\dot{\phi}(t)}{\phi(t)} = -\frac{\sqrt{\kappa V}}{4\sqrt{3}} \frac{8 + 3\kappa^2 \phi^4}{12 - \kappa^2 \phi^4} \sqrt{4 - \kappa^2 \phi^4}
\]

• Finally solving these gives Hubble’s parameter.

\[
H(t) = \frac{\dot{a}}{a} = \frac{\sqrt{V\kappa}}{2\sqrt{3}} \sqrt{(4 + \kappa^2 \phi^4(t))} \sqrt{4 - \kappa^2 \phi^4(t)}
\]
Hubble

• Constant Hubble is an attractor which compares well with observations of Hubble today.
• Constant Hubble is an attractor.
This shows that Torsion falls to zero sufficiently quickly.
• This shows Torsion converging to zero.
Torsion

- This shows more clearly how quickly Torsion decays during inflation.
Conclusion

• I hope that I have shown Dark spinors have some very rich structure.
• That more attention needs to be given to them.
Conclusion

- I hope that I have shown Dark spinors have some very rich structure.
Conclusion

- I hope that I have shown Dark spinors have some very rich structure.

- That more attention needs to be given to them.