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1 Introduction

Definition 1.1. Let A be a n× n matrix. A scalar λ is an eigenvalue of A if and only if there exists
a vector x = (x1, x2, . . . , xn)T such that A x = λx. In other words,

A x =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
. . .

...
an1 an2 an3 · · · ann




x1

x2

x3

...
xn

 =


λx1

λx2

λx3

...
λxn

 = λx. (1)

This all looks complicated so let’s looks at a simple example.

Example 1.2. Let

A :=
(

1 2
2 1

)
Then λ = 3 and λ = −1 are eigenvalues of A.

Proof. Let x :=
(

1
1

)
and y :=

(
1
−1

)
. Then

A x =
(

1 2
2 1

)(
1
1

)
=
(

1 + 2
2 + 1

)
= 3

(
1
1

)
= 3x

and

A y =
(

1 2
2 1

)(
1
−1

)
=
(
−1

1

)
= (−1) ·

(
1
−1

)
= (−1) · y

Since x and y are non zero vectors, it follows that −1 and 3 are eigenvalues of A.

The two vectors that we found to satisfy the above equations are called Eigenvectors of the matrix
A.

Definition 1.3. If A is a square matric with eigenvalue λ, then any vector x for which A x = λx is
called an eigenvector of A.

So, in the case of the matrix A =
(

1 2
2 1

)
from Example 1.2 we would say that

“
(

1
1

)
is an eigenvector of A with eigenvalue λ = 3”

and

“
(
−1

1

)
is an eigenvector of A with eigenvalue λ = −1”

It would be good to have a systematic way of finding eigenvalues/eigenvectors without just guessing.
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2 Finding Eigenvalues and Eigenvectors

2.1 Finding Eigenvalues

To find eigenvalues of matrices, one uses properties of the determinant

Theorem 2.1. Suppose that A is a square matrix. Then λ is an eigenvalue of A if and only if |A−λI| =
0. Here, I is the identity matrix with the same dimensions as A.

Let’s try the theorem out on the matrix from Example 1.2 and check that it gives the right eigenvalues.

|A− λI| =
∣∣∣∣( 1 2

2 1

)
−
(
λ 0
0 λ

)∣∣∣∣ = det
(

1− λ 2
2 1− λ

)
= (1− λ)2 − 4.

Hence, λ is an eigenvalue of A if and only if (1− λ)2 − 4 = 0. Since,

(1− λ)2 − 4 = λ2 − 2λ− 3 = (λ− 3)(λ+ 1)

this implies that λ = 3 and λ = −1 are the only eigenvalues of A.

Example 2.2. Find all the eigenvalues of the matrix

B :=

 2 −3 9
−1 0 −1

0 1 −1


Proof. By Theorem 2.1 we need to work out

|B − λI| =

∣∣∣∣∣∣
 2 −3 9
−1 0 −1

0 1 −1

− λ
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2− λ −3 9
−1 −λ −1
0 1 −1− λ

∣∣∣∣∣∣ .
Now just work out the determinant of this matrix.

det

 2− λ −3 9
−1 −λ −1
0 1 −1− λ

 = (2− λ)× ((−λ)(−1− λ) + 1)− (−3)× ((−1)(−1− λ)− 0) + 9× (−1− 0)

= (2− λ)(λ2 + λ+ 1) + 3(1 + λ)− 9
= −λ3 + λ2 + 4λ− 4
= (1− λ)(λ2 − 4)
= (1− λ)(λ− 2)(λ+ 2).

Hence, the eigenvalues of B are λ = 1, 2 and −2.

2.2 Finding Eigenvectors

For square matrices of small dimension (e.g. n = 2, 3) eigenvectors can easily be found by hand, once
we have found the eigenvalues.

Example 2.3. For each eigenvalue of the matrix

B :=

 2 −3 9
−1 0 −1

0 1 −1


find an eigenvector corresponding to that eigenvalue.
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Proof. We know from Example 2.2 then B has eigenvalues λ = 1, 2 and −2. Start by looking for an
eigenvector for the eigenvalue λ = 1. We want 2 −3 9

−1 0 −1
0 1 −1

 x
y
z

 = 1 ·

 x
y
z


for some x, y, z that we must find. Multiplying out the matrix gives 2x− 3y + 9z

−x− z
y − z

 =

 x
y
z


so we need to solve the three equations

2x− 3y + 9z = x

−x− z = y

y − z = z

Let z = 1. Then we must have y = 2 and x = −3. Check that these satisfy the equations. Then, −3
2
1

 is an eigenvector of B with eigenvalue 1.

Solving similarly for the other eigenvalues gives: −7
3
1

 is an eigenvector of B with eigenvalue 2.

and  3
−1

1

 is an eigenvector of B with eigenvalue −2.

Notice that since finding the eigenvectors was just solving three simultaneous equations, we could
have use the Gaussian method. However, this is not much simpler for small matrices. For large matrices
(or if you wanted to use a computer to do it for you) the Gaussian method is better.

In the examples so far, all the eigenvalues have been real. However, even for the 2 × 2 case, we are
solving a quadratic equation to find the eigenvales. Hence, there is a chance that we might find complex
eigenvalues, and hence have to find complex eigenvectors. However, in certain cases, all the eigenvalues
must be real.

3 Eigenvalues of Symmetric matrices

Recall that a symmetric matrix is a square matrix for which A = AT . For example, 1 −2
√

2
−2 0 1√

2 1 5

 ;
(

2 −3
−3 0

)
;

 1 11 0
11 0 76
0 76 8


are all symmetric matrices.

Theorem 3.1. Suppose that A is a symmetric matrix. Then all the eigenvalues of A are real numbers,
and the eigenvectors of A are orthogonal.
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By Orthogonal, it is meant that the scalar product of two vectors is zero. The scalar product of
two vectors (a1, a2, . . . , an)T and (b1, b2, . . . , bn)T is defined as

a1

a2

...
an

 ·


b1
b2

...
bn

 := a1b1 + a2b2 + . . . anbn =
n∑

i=1

aibi.

For example,  1
1
−1

 ·
 1

0
1

 = 1 + 0− 1 = 0

and hence, we say that

“the vectors

 1
1
−1

 and

 1
0
1

 are orthogonal”.

Let’s see an example to convince us that the Theorem is true.

Example 3.2. Let A be the symmetric matrix given by

A :=
(

1 2
2 −2

)
Find the eigenvalues of A, and the corresponding eigenvectors. Finally, show that the eigenvectors
correcponding to the two different eigenvalues are orthogonal.

Proof. (i) Find eigenvalues:

det (A− λI) = det
(

1− λ 2
2 −2− λ

)
= (1− λ)(−2− λ)− 4

= λ2 + λ− 6
= (λ+ 3)(λ− 2).

Hence, A has eigenvalues λ = −3 and λ = 2.
(ii) find eigenvectors: First look for the eigenvector with eigenvalue λ = −3. We need(

1 2
2 −2

)(
x
y

)
= (−3)

(
x
y

)
for some x, y. In other words, need to solve the equations

x+ 2y = −3x
2x− 2y = −3y

Choosing x = 1 gives y = −2, so(
1
−2

)
is an eigenvector of A with eigenvalue λ = −3.

Similary, finding the eigenvector for λ = 2 gives,(
1
1
2

)
is an eigenvector of A with eigenvalue λ = 2.
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(iii) check the eigenvectors are orthogonal:(
1
−2

)
·
(

1
1
2

)
= 1− 2(1/2) = 0

and so the eigenvectors are indeed orthogonal.

Another interesting property to notice is that if we defince a matrix P to have columns as the
eigenvectors of A, i.e.

P :=
(

1 1
−2 1

2

)
then we have that P−1A P =

(
−3 0

0 2

)
, and note that −3 and 2 are the eigenvalues of A. This is the

Diagonalised form of A.
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