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Dissociable prototype learning systems have been demonstrated behaviorally and with neuroimaging in
younger adults as well as with patient populations. In A/not-A (AN) prototype learning, participants are
shown members of category A during training, and during test are asked to decide whether novel items
are in category A or are not in category A. Research suggests that AN learning is mediated by a
perceptual learning system. In A/B (AB) prototype learning, participants are shown members of category
A and B during training, and during test are asked to decide whether novel items are in category A or
category B. In contrast to AN, research suggests that AB learning is mediated by a declarative memory
system. The current study examined the effects of normal aging on AN and AB prototype learning. We
observed an age-related deficit in AB learning, but an age-related advantage in AN learning. Compu-
tational modeling supports one possible interpretation based on narrower selective attentional focus in
older adults in the AB task and broader selective attention in the AN task. Neuropsychological testing in
older participants suggested that executive functioning and attentional control were associated with better
performance in both tasks. However, nonverbal memory was associated with better AN performance,
while visual attention was associated with worse AB performance. The results support an interactive
memory systems approach and suggest that age-related declines in one memory system can lead to
deficits in some tasks, but to enhanced performance in others.
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The ability to quickly and accurately classify objects in our
surrounding is essential to maintaining a functional lifestyle across
the life span. An extensive body of research suggest that the
learning of different types of classification tasks are mediated by
functionally and neurally distinct category learning systems
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby &
Maddox, 2005; Koenig et al., 2005; Poldrack & Foerde, 2008;
Smith, Patalano, & Jonides, 1998; Seger, 2008). For example,
different neural circuits have been shown to underlie rule-based
and information-integration classification learning (Ashby & Mad-
dox, 2005). Recent research suggests there is an age-related deficit

in rule-based and information-integration category learning, but
that the processing locus of each deficit is unique (Maddox,
Pacheco, Reeves, Zhu, & Schnyer, 2010, and see Filoteo & Mad-
dox, 2004).

Another important type of classification learning is prototype
learning (Homa, Sterling, & Trepel, 1981; Posner & Keele, 1968;
Reed, 1974; Smith & Minda, 1998). Prototype learning has also
been examined in normal aging. In an elegant series of studies,
Hess and colleagues examined the effects of normal aging on
prototype learning. In a typical prototype learning task a single
prototype is constructed and category exemplars are generated by
distorting the features of the prototype. Hess and colleagues uti-
lized this task and found that age differences were greater when
there was an emphasis on active hypothesis generation and testing
(Hess & Slaughter, 1986a; Hess & Slaughter, 1986b). Older adults
were also less likely to use information about specific category
exemplars and showed reduced retention processes (Hess, 1982).

Two Prototype Learning Tasks

Prototype learning is a type of category learning that involves
the classification of objects created by distorting one or more
prototypes (see Posner & Keele, 1968; Rosch, 1973; Rosch &
Mervis, 1975; Smith & Minda, 1998). In a typical prototype
learning task, the participant is presented with a series of objects
that are each drawn from one or more structured categories. During
this training period, the participant is asked to classify each object
into one of several categories, and receives corrective feedback
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regarding their responses. Through trial-by-trial feedback, the par-
ticipant learns to discriminate among the categories. Following
training, the participant is generally presented with a series of test
items that are used to evaluate the participant’s category knowl-
edge. The participant is required to generate a classification re-
sponse, but receives no feedback. These items are also members of
the trained categories, but are often novel members, not presented
during training. Both tasks in the present study use this training-
test format.

A/Not-A (AN) prototype learning involves training on exem-
plars distorted from one prototype, and formed the basis of much
of the early work on prototype learning, while A/B (AB) prototype
learning involves training on exemplars distorted from two distinct
prototypes. In AN prototype learning task, participants are shown
members of category A during training, and during test are asked
to decide whether novel items are in category A or are not in
category A. In AB prototype learning, participants are shown
members of category A and B during training, and during test are
asked to decide whether novel items are in category A or category
B. Critically, the same stimuli are used in the test phase for both
the AN and AB tasks. Thus, any differences observed in AN and
AB performance cannot be attributed to differences between the
structures of non-A versus B category, nor to any stimulus-specific
differences.

Differing Views of Prototype Learning

Prototype learning may be accomplished by one underlying
system, or by multiple systems. While the literature does not
always agree on the number of systems, we believe that testing
different forms of prototype learning in normal aging may shed
light on this debate. Some recent investigations of prototype learn-
ing in young adults suggest that two different types of prototype
learning exist and that each might rely on distinct neural circuits
(Palmeri & Flannery, 1999; Zeithamova, Maddox, & Schnyer,
2008). Evidence for a functional dissociation between AN and AB
prototype learning comes from neuroimaging and patient data
(Bozoki, Grossman, & Smith, 2006; Kéri, Kelemen, Benedek, &
Janka, 2001; Knowlton & Squire, 1993; Reber & Squire, 1999;
Zaki, Nosofsky, Jessup, & Unverzagt, 2003; Zeithamova et al.,
2008). These data suggest that AN learning is mediated by lateral
occipital and striatal regions associated with a perceptual learning
system, whereas AB learning is mediated by parahippocampal,
inferior parietal, and orbitofrontal regions associated with a de-
clarative rule learning system. It is important to note that single
system approaches have also been advanced and have been shown
to model certain forms of prototype learning very well (Nosofsky
& Zaki, 1998; Palmeri & Nosofsky, 2001; for an excellent review
see Palmeri & Flanery, 2002). Single system approaches argue that
prototype learning may be subserved by declarative memory sys-
tems and that prototype learning and explicit memory performance
dissociations might be captured by differences in a single compo-
nent of declarative memory.

Predictions

To foreshadow, our main prediction is based on a dual system
approach. In this approach, a dysfunctional declarative system in
older adults could lead to impaired AB performance despite intact

or enhanced AN performance. This is due to the perceptual learn-
ing system taking control of the task sooner in older adults than
younger adults. In AB, the declarative system drives performance
in both older and younger adults, and so younger adults would
have an advantage. Other predictions are viable, and we outline
both single and dual system predictions below.

In dual system approaches, AB prototype learning is thought to
rely upon medial temporal lobe (MTL) and frontal regions
(Zeithamova et al., 2008). While MTL regions may not experience
decline in normal aging, large declines in white and gray matter in
frontal regions have been shown (Davis et al., 2009; Head et al.,
2004; Raz et al., 2005; Raz, Rodrigue, & Haacke, 2007; Sullivan,
Marsh, & Pfefferbaum, 2005). Frontal volume decline suggests
that age-related deficits in AB prototype learning are likely. Im-
portantly for single system approaches, prefrontal cortex (PFC)
decline is linked with declarative memory ability (Janowsky, Shi-
mamura & Squire, 1989). Thus, single and dual system approaches
would both predict declines in normal aging.

What is less clear are the predictions that dual system ap-
proaches make for the effects of normal aging on AN prototype
learning. On the one hand, deficits in striatal processing (Filoteo &
Maddox, 2004), as well as reductions in striatal volumes, (Raz,
Gunning-Dixon, Head, Dupuis, & Acker, 1998; Raz et al., 2003)
have been shown to occur in normal aging. Furthermore, reduced
tonic dopamine levels and dopaminergic dysregulation are associ-
ated with normal aging (Martin, Palmer, Patlak, & Calne, 1989;
Nieuwenhuis et al., 2002; van Dyck et al., 2002; Volkow et al.,
2000; Volkow et al., 1998). These have been hypothesized to
account for some of the cognitive impairments in normal aging
(Braver & Barch, 2002; Braver et al., 2001). In addition, visual
processing areas have been shown to reduce with normal aging.
This reduction predicts performance on nonverbal working mem-
ory tasks (Raz et al., 1998). On the other hand, age-related declines
in striatal volumes are not correlated with changes in cognitive
processing (Raz et al., 1998), and although visual processing
volumes predict nonverbal working memory performance, AN
prototype learning involves a more implicit form of memory
subserved by the perceptual learning system (Zeithamova et al.,
2008). A single system approach may suggest either deficits in AN
due to overall declarative dysfunction, or perhaps enhanced AN
performance due to increased generalizability resulting from less
precise memory traces of individual category members.

Taken together, dual system approaches suggest that age-related
deficits may not emerge, or may be small in magnitude and lead to
the possibility for intact performance in AN prototype learning in
normal aging. This follows from an interactive memory systems
approach that is gaining favor in the literature (Ashby et al., 1998;
Maddox, et al., 2010; Poldrack & Packard, 2003; Poldrack &
Foerde, 2008). The idea is that declarative memory systems tend to
dominate early with control being passed to other systems only
when performance demands dictate; for example, when better
performance can be achieved by another system (Ashby et al.,
1998; Poldrack & Packard, 2003). If the declarative memory
system shows age-related declines, and the perceptual learning
system shows smaller declines or no decline at all, then an inter-
active memory system approach would predict an age-related
deficit in AB performance but intact AN performance. The age-
related deficit in AB would emerge because declarative memory
systems should dominate but operate less efficiently with normal
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aging. The age-related advantage in AN would emerge because
performance would be passed more quickly from the deficient
declarative memory system to the more optimal perceptual learn-
ing system.

Prior research supports the prediction for an age-related AN
advantage and AB disadvantage. Gopie, Craik, and Hasher (2011)
demonstrated that older adults performed better than younger
adults in an implicit memory task which relies on perceptual
processing. Conversely, the pattern reversed for an explicit mem-
ory task which was more conceptually driven. This pattern lends
credence to the dual-systems based prediction since the AN task
has been associated with the perceptual learning system, while the
AB task is more of an explicit processing task.

However, it is possible that a single underlying system is re-
sponsible for both AN and AB prototype learning. If this were the
case, we may still expect to see differences between these two
tasks in older versus younger adults. For example, declarative
memory deficits associated with normal aging may lead to overall
difficulty for older adults in AB but not AN. This could arise, for
example, if older adults acquired a better representation of the sole
training category in AN due to fuzzier exemplar representations
which lead to better generalizability of the category. Similarly, AB
performance would decline due to problems in generalizing exem-
plars from two categories into distinct categories. Importantly, this
would predict that older adults would have better accuracy for the
A category in the AN task versus the B category.

In the current study, younger and older adults completed AN or
AB prototype learning tasks. Behavioral analysis based on the
accuracy of responding during the test phase, and computational
modeling are employed to investigate the effect of normal aging on
performance in these dissociable prototype learning systems. Fur-
thermore, neuropsychological testing is used to investigate indi-
vidual differences within the older adult group.

Method

Participants

Fifty-four younger adults from the University of Texas and
Austin community participated for monetary compensation or
class credit (28 male; AgeMean � 20.6; AgeSD � 0.33; range �
18–29 years). Fifty-six older adults from the local community
were recruited and participated for monetary compensation (20
male; AgeMean � 69.4; AgeSD � 0.32; range � 60–84 years).
Participants were paid $10 per hour for participating. Older adults
were administered an extensive neuropsychological testing battery
to identify any mental declines not due to normal aging. All older
adults included in the study were consistently within 1 SD of
normal performance across each domain on the neuropsychologi-
cal measures. Younger and older adults were matched based upon
the scaled WAIS-IV (Wechsler, 2008) vocabulary test [t(107) �
1.88, p � .06] and gender ratio [�2(1, N � 109) � 0.39, p � .5].
Because the younger group was comprised of college aged indi-
viduals, older adults had on average 3.5 more years of education
than the younger group. Scaled WAIS vocabulary score were
never significant correlates of behavioral performance. Gender
was also tested as a categorical independent variable, and was
never significant. Three younger adults and six older adults were

excluded for performing below chance in the test phase and were
not included in the participant counts.

Stimuli

The stimuli were cartoon animals that varied along 10 binary
dimensions, such as body shape (round or square), head position
(facing forward or upward), tail shape (feathery or pointy), and so
forth (see Figure 1). In total, the size of the set of all possible
exemplars is 210 � 1,024. For each participant, a category A
prototype was randomly generated by selecting values for each
binary dimension. Next, a category B prototype was defined as the
antiprototype of the category A prototype. In other words, the
category B prototype has values along the 10 binary dimension
that are opposite of the category A prototype. In this way, the two
prototypes are separated by maximum Hamming distance within
the set of possible exemplars. An exemplar for a given category
was generated by distorting the prototype by changing one or more
of the binary valued dimensions. Thus, each exemplar could differ
from its prototype by varying distance. If only one dimension
differed, the exemplar had a distance of one. If two dimensions
differed, the exemplar had a distance of two, and so forth. Items
with a distance of five were ambiguous and were not included. In
the AN task, only members from category A were shown in the
training phase. In the AB task, members from both categories were
shown in the training phase.

The test phase was identical for both tasks: Members from both
categories were shown, with no corrective feedback given. Test
stimuli were 42 novel exemplars. For both categories 21 exemplars
were shown: 5 exemplars at each of the four distance levels, along
with 1 prototype stimulus. These were the same stimuli and task
from Zeithamova et al. (2008).

Procedure

In the AB condition, training consisted of 10 A items and 10 B
items, presented in random order. On each trial, 2 seconds after
stimulus onset, the participant was prompted to give an A or B
response, followed by corrective feedback. Within each category,
two training stimuli differed from the category prototype on one
feature, three differed on two features, three differed on three
features, and two differed on four features. Across all 10 stimuli
within each category, the category typical features were presented
7 or 8 times and the opposite category typical features were

Figure 1. Example stimuli from categories A and B, varying by distance.
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presented 2 or 3 times. Neither prototype was presented in the
training phase.

In the AN condition, prior to training, participants were told that
they would later need to categorize A members from non-A
members. The training phase consisted of category A members
only. Twenty category A members were shown in random order
and passively for a minimum of 2 seconds, with a keystroke
required to advance to the next item. Five items varied from the
category A prototype on one feature, five differed on two features,
five differed on three features, and five differed on four features.
Across all 20 stimuli, the prototypical value on each dimension
was presented 15 times and the nonprototypical value on each
dimension was presented 5 times.

The testing phase was identical for both tasks, with only the
label of the second category (B vs. non-A) differing between the
tasks. Participants were presented with 42 stimuli, one at a time
that included both prototypes and five stimuli selected from each
distance from the prototype (except distance 5�ambiguous stim-
uli). None of the stimuli were previously used in the training
phase. No feedback was provided. A fixation cross was presented
between each stimulus onset lasting 2.5 seconds.

Neuropsychological Testing

All older adults completed a large battery of neuropsychological
tests including the Wisconsin Card Sorting Test (WCST; Heaton,
1980), Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-
IV; Wechsler, 2008), Stroop test (Stroop, 1935), Trail-making test
(Corrigan & Hinkeldy, 1987), and Wechsler Memory Scale
(WMS-IV). All results were normalized for age using standardized
procedures and converted to Z-scores.

Results

Overall Accuracy

Figure 2 illustrates accuracy results from the test phase for
younger and older adults for the AN and AB conditions. Accuracy
in AN was 60.1% (SE � 2.0%) for younger adults and 65.7%
(SE � 1.6%) for older adults. Accuracy in AB was 71.7% (SE �
1.7%) for younger adults and 64.7% (SE � 2.6%) for older adults.
A 2 Group (Older vs. Younger) � 2 Task (AN vs. AB) between
subjects ANOVA was conducted on test accuracy. The main effect

of Group was not significant (p � .82) and the main effect of Task
was significant, F(1, 108) � 7.5, p � .01, �2 � 0.07. However the
main effect of Task was qualified by a significant Group by Task
interaction, F(1, 108) � 10.9, p � .01, �2 � 0.09. The interaction
suggested an age-related advantage in the AN task, t(56) � 2.18,
p � .03, and an age-related deficit in the AB task, t(49) � 1.68,
p � .03.

Prototype Accuracy

We conducted a 2 Group (Older vs. Younger) � 2 Category
(Prototype A vs. Prototype B) repeated measures ANOVA on test
accuracy for the actual prototype exemplars which were both
shown once per subject during testing. In AN, there was a signif-
icant main effect of Category such that accuracy was better for the
A versus the B prototype (i.e., the antiprototype), F(1, 55) � 7.6,
p � .01, �2 � 0.12. There was also a significant Group by
Category interaction, F(1, 55) � 5.6, p � .05, �2 � 0.09, such that
older adults were more accurate for the antiprototype than younger
adults. In AB, there was no significant main effects nor a signif-
icant Group by Category interaction (ps � 0.2)

Computational Modeling

To examine the locus of the age-related AN advantage and AB
deficit, we applied simple prototype models to the data from each
individual. These models have been used extensively in the liter-
ature and provide important insights into underlying psychological
processes that are unobservable with traditional performance mea-
sures (such as accuracy) (Ashby & Maddox, 1993; Posner &
Keele, 1968; Smith & Minda, 1998). The model assumes that on
each trial, a participant calculates an attention-weighted distance
between the stimulus at hand (x) and the prototype of the catego-
ries (PA for category A, and PB for category B). The attention
weights effectively stretch and shrink the perceptual space along
each stimulus dimension with larger attention weights stretching
the space (increasing the dimension-level discriminability) and
smaller attention weights shrinking the space (decreasing the
dimension-level discriminability). The (euclidean) distance be-
tween x and P is calculated as:

dxPA � �	wi
 xi � PAi�
2�1/ 2 (1)

where wi represents the attention-weight of dimension i. The
attention weights are constrained to sum to 1, yielding nine free wi

parameters. The binary value of a dimension i is denoted by xi, and
PAi denotes the binary feature value on dimension i for PA. PB is
also calculated on each trial, and used with PA to calculate the
predicted probability of responding A (or B) to a stimulus, P(A�x):

P
A�x� �
�iA

�iA � �iB
(2)

where �iA � e-cd (where d is calculated by Equation 1) The c
parameter represents the perceptual sensitivity of the system, and
represents the 10th free parameter. Larger values of c effectively
stretch the perceptual space uniformly leading to greater overall
discriminabilty across stimuli, whereas smaller values of c effec-
tively shrink the perceptual space uniformly leading to lesser
overall discriminabilty across stimuli. For each participant, we fit

Figure 2. Accuracy results for younger controls and older adults in the
AN and AB tasks.
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the model to 42 test items using maximum likelihood procedures
(Takane & Shibayama, 1992). The model provided a good account
of the data yielded an average absolute deviation between pre-
dicted and observed accuracy of 0.04, 0.03, 0.04, and 0.05 for
younger adults on AN and AB and older adults on AN and AB,
respectively.

The perceptual sensitivity (c) values from the model are dis-
played in Figure 3. In AB, the perceptual sensitivity value was
smaller for older adults than for younger adults, although the
difference did not reach statistical significance [t(49) � 1.90, p �
.06]. Interestingly, in AN the perceptual sensitivity value was
larger for older adults than for younger adults, but again this
difference did not reach statistical significance [t(56) � �0.98,
p � .33].

We examined attentional focus within the framework of the
model in two ways. First, we examined the maximum dimensional
attention weight parameter (out of the 10 wi parameters) for each
subject. These values are displayed in Figure 4. The larger the
maximum dimensional weight the greater the focus (usually inter-
preted as attentional focus) placed on a single feature dimension.
An optimal classifier would evenly distribute attentional focus to
all dimensions, resulting in a maximum dimensional weight of 0.1.
In AB, the maximum attentional weight was significantly larger
for older adults than younger adults [t(49) � 2.6, p � .05]. In AN,
the maximum dimensional weight did not differ significantly be-
tween older and younger adults, but older adults were slightly less
focused on a single dimension than younger adults.

Second, we calculated the number of dimensional weights
needed to account for 95% of the weight allocation. This was done
by sorting the weights in order of size, then summing cumulatively
starting with the largest weight until a value equal to or larger than
0.95 was reached.1 These results converged with those for the
maximum dimensional attention weight. Specifically, in AB,
younger adults had on average 4.0 dimensions account for 95% of
the weight allocation (SE � .29), while older adults had on average
3.1 (SE � .28), [t(49) � 2.1, p � .05]. In AN, there was no
significant difference between older adults (3.7, SE � 0.26) and
younger adults (3.6, SE � 0.27). Although one must always be
careful not to over interpret the psychological meaning of model
parameters, they can be informative and this application is no
exception.

Neuropsychological Testing

Several neuropsychological tests were given to the participants
before their participation in the present experiment. The testing
battery included Trail Making Test Part A (visual attention), Trail
Making Test Part B (task switching), Wisconsin Card Sorting Test
(WCST; executive functioning and set shifting), WAIS-IV digit
span (working memory), WMS-IV immediate visual reproduction
recall (nonverbal memory), California Verbal Learning Test
(CVLT) long delay free and cued recall (long-term memory), and
WMS-III logical memory 30-min recall test (long-term memory).
All scores were normalized for age and converted to Z-scores.

Importantly, the older adults were tested for memory impair-
ment. All participants had positive Z-scores in the CVLT long
delay free recall test (mean was 0.68 [SE � 0.18] for the AN group
and 0.73 [SE � 0.16] for the AB group) and cued-recall test (mean
was 0.49 [SE � 0.23] for the AN group and 0.54 [SE � 0.19] for
the AB group]), as well as positive Z-scores in the WMS-III
logical memory 30-min recall test (1.19 [SE � 0.17] for the AN
group and 1.32 [SE � 0.17] for the AB group). Furthermore, these
scores did not correlate with the task performance or model based
analysis described below.

In the AN task, accuracy correlated negatively with Trail Mak-
ing Test Part B (r2 � 0.16, p � .05, df � 31). Maximum
attentional weight (associated with less evenly spread attention)
was positively associated with WCST number of categories
learned (r2 � 0.25, p � .01, df � 28) and years of education (r2 �
0.14, p � .05, df � 31). The sensitivity parameter correlated
positively with WAIS-IV digit span total score (r2 � 0.13, p � .05,
df � 31) and WMS-IV immediate visual reproduction recall (r2 �
0.14, p � .05, df � 31). Thus, executive functioning, working
memory, nonverbal memory, and education level were indicators
of good AN performance. Task switching ability was associated
with worse accuracy.

In the AB task, accuracy correlated negatively with Trail Mak-
ing Test Part A (r2 � 0.21, p � .05, df � 24). The number of
dimensions comprising 95% of attentional weights (associated

1 Results were similar for 0.99, 0.95, and 0.90. Results were directional
for 0.80, however lower values are less useful for assessing dimensional
weight allocation.

Figure 4. Maximum dimensional weights from computational modeling
results for younger controls and older adults in the AN and AB tasks.

Figure 3. Perceptual sensitivity (c) value from computational modeling
results for younger controls and older adults in the AN and AB tasks.

124 GLASS, CHOTIBUT, PACHECO, SCHNYER, AND MADDOX



with more evenly spread attention) correlated positively with age
(r2 � 0.29, p � .01, df � 25). Thus, visual attention was associated
with worse AB performance, while higher age was associated with
better AB performance.

Discussion

We examined the effects of normal aging on performance in two
prototype learning tasks that, according to prior research, are likely
subserved by distinct neural circuits. The AN task involves train-
ing on exemplars distorted from one prototype and testing on novel
members from the same category as well as novel noncategory
members. AN prototype learning is thought to be mediated by a
perceptual learning system involving the lateral occipital cortex
and striatum (Zeithamova et al., 2008). The AB task involves
training on exemplars distorted from two prototypes and testing on
novel members from each category. AB prototype learning is
thought to be mediated by a rule-learning declarative memory
system involving the parahippocampus, inferior parietal cortex,
and orbitofrontal cortex (Zeithamova et al., 2008).

Relative to young individuals, we observed an age-related def-
icit in AB performance and an age-related advantage in AN
performance. The model-based analyses lends support to the idea
that the AB deficit in older adults is due to increased attention to
a few stimulus dimensions when a broader attentional focus would
be optimal. The maximum dimensional weight was larger for older
than for younger adults, and 95% of the (model defined) atten-
tional resource was allocated to just over three dimensions for
older adults but was spread across four dimensions for younger
adults. Whereas the optimal strategy is to spread attention evenly
across all 10 stimulus dimensions, both older and younger adults
focus on a smaller subset of dimensions. One possibility is that
older and younger adults are actively seeking a “rule”, with older
adults seeking a simpler rule than younger adults (see also Maddox
et al., 2010). Another possibility is that changes in working mem-
ory may play a role with older adults finding it more difficult to
maintain multiple dimensions of information across two catego-
ries, or maintaining two categories regardless of their number
dimensions. However, we do not find that older adults who per-
formed better in neuropsychology tests of memory functioning
also did better on the AB tasks. Future work is needed to address
this issue more fully.

Interestingly, a very different pattern emerged in the AN model-
based analyses. Acknowledging that one should not over interpret
model parameters, the models suggest that when the task requires
learning the structure of a single category, as opposed to learning
two categories, older adults spread attention more broadly than
younger adults, and older adults showed better global discrimina-
tion ability. In this case, it is possible that younger adults were less
focused on the stimulus as a whole and, in addition, or perhaps as
a result, they found the stimuli less discriminable.

Importantly, older adults outperformed younger adults on the
AN task which was the task that yielded lower overall accuracy.
This means that these findings cannot be attributed to a difference
in difficulty, since younger adults would have outperformed older
adults in both tasks. Of course other measures of difficulty are
possible and should be explored in future research.

Correlating task performance with neuropsychological testing
indicated that these two tasks tap very different underlying sys-

tems. Education level, executive functioning and both working
memory and nonverbal memory were associated with better AN
performance, while task switching ability was associated with
worse AN performance. In the AB task, visual attention and lower
age were associated with worse performance. The fact that non-
verbal memory is important for the AN task but not the AB task
could be seen to support the hypothesis that a perceptual learning
system underlies AN prototype learning but not necessarily AB
prototype learning. This differential pattern further supports the
multiple systems view of prototype learning (Zeithamova et al.,
2008). Furthermore, enhanced executive functioning correlating
with better AN performance could be seen to support a dual
systems approach in that executive functioning could lead to a
more efficient tradeoff from the declarative system to the percep-
tual learning system.

AB prototype learning is mediated by frontal and temporal lobe
structures that are affected in normal aging, and as expected
age-related AB deficits emerge. AN prototype learning is mediated
by posterior visual systems and the striatum that are less affected
in normal aging and AN deficits do not emerge. Instead an age-
related advantage in AN learning emerged. One intriguing pro-
cessing explanation for the age-related AN advantage is based on
the growing literature suggesting that memory systems to do not
operate independently, but rather tend to be highly interactive
(Poldrack & Foerde, 2008; Poldrack & Packard, 2003). One find-
ing from this literature is that declarative memory systems often
tend to dominate early with control being passed to other systems
only when performance demands dictate; for example, when better
performance can be achieved by another system (Ashby et al.,
1998; Poldrack & Packard, 2003). If the declarative memory
system shows age-related declines, and the perceptual learning
shows smaller declines or no decline at all, then an interactive
memory system approach would predict an age-related deficit in
AB performance but an age-related advantage in AN performance.
The age-related deficit in AB would emerge because declarative
memory systems should dominate but operate less efficiently with
normal aging. The declarative memory system does not pass
performance to the perceptual learning system perhaps because the
risk of using perceptual learning to solve the task is known to be
high. It is possible that more extensive training may reduce this
uncertainty. The age-related advantage in AN would emerge be-
cause performance would be passed more quickly from the defi-
cient declarative memory system to the more optimal perceptual
learning system.

This prediction is not without precedence in the literature.
Several studies in the literature have shown that information-
integration category learning that is mediated by a procedural-
based learning system can be enhanced by introducing experimen-
tal manipulations that impair frontal/declarative memory
processing (Filoteo, Lauritzen, & Maddox, 2010; Maddox, Love,
Glass & Filoteo, 2008). The “deficient” frontal/declarative pro-
cessing speeds the transition to the procedural-based learning
system effective, enhancing learning and performance. The present
study is the first to show this effect in normal aging, and to suggest
that age-related declines in processing in the declarative memory
system might encourage a shift to a more perceptual learning
approach, and thus improve performance in an AN prototype
learning task that is mediated by the perceptual learning system.
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While this explains early learning, it is likely that the discrepancy
between younger- and older-adults would decrease over time.

The model based analyses provide important insights into the
processing characteristics of this memory system interaction. The
models suggest that the more efficient transition from the declar-
ative to the perceptual learning system in older adults leads to a
broader attentional focus and to an increase in perceptual sensi-
tivity to feature diagnostics, both of which increase performance.
Although clearly more work is needed, this is an intriguing finding
and is suggestive that deficits in one cognitive system can often
lead to performance advantages in another, at least when those
systems are potentially in competition with each other.

Although a dual system prospective provides a framework con-
sistent with these results, a single system interpretation is also a
viable possibility. This view would postulate that the deficits in
declarative memory might underlie both the age-related AB deficit
and the AN advantage. Assuming that all participants engaged in
an explicit strategy to memorize training items, it is possible that
older adults’ memory traces were less distinct or fuzzier than those
of the younger adults. This might lead to greater generalization and
support better abstraction of the prototype when only one category
is present but would lead to worse generalization and worse
abstraction of the prototype when two categories are present. Thus,
this alternative would predict better performance in the AN task,
but worse performance in the AB task as we observed in the
experiment.

This single system hypothesis predicts that older adults should
show better generalization in the AN condition as one moves away
from the A prototype, and this prediction is supported by the data
(accuracy for all test items other than the prototype: older adults �
66%; younger adults � 58%). However, this hypothesis would
also predict that accuracy for the studied A prototype in the AN
condition should be higher for older adults than for younger adults,
but this was not supported in the data (accuracy for the A proto-
type: older adults � 88%; younger adults � 77%). Thus the
age-related AN performance advantage was likely not due to an
enhanced representation of the A prototype, but rather was due to
better generalization. Thus, declarative memory deficits in normal
aging could account for our overall finding that older adults
outperformed younger adults in the AN task but not in the AB task.
Even so, adjudicating between these two possibilities will continue
to require future research, perhaps some that will include recog-
nition memory tests.

As mentioned earlier, a single declarative system approach may
predict increased accuracy for the category A prototype versus the
antiprototype in AN learning. However, the opposite turned out to
be the case. Older adults were more accurate for the antiprototype
than younger adults, with no difference between the two groups for
the category A prototype. Thus, this particular hypothesis that may
follow from single system approaches does not seem viable.

While an interactive memory system approach is in line with the
current results, it is possible that other underlying brain systems
are leading to the results. A more definitive test would involve
directly examining the neural correlates, perhaps using fMRI.
Zeithamova et al. (2008) examined AN and AB prototype learning
in young adults using brain imaging and an extension to older
adults would be relatively straightforward and worthy of future
research. In the only known study of classification learning in
normal aging, Fera et al. (2005) examined the neural mechanisms

associated with probabilistic category learning. Although they
found no age-related performance differences, they did find a shift
in the extent of activation in different regions as a function of age.
Specifically, they found reduced caudate and prefrontal activation,
but increased parietal activation in older adults. Although specu-
lative, this increased parietal activation in older adults could be
related to the differences in attentional focus found between the
AN and AB tasks in the current study. This task is very different
from the prototype learning tasks used in the current study, but
does lend support to the claim that changes in activation patterns
emerge with normal aging and can affect performance.
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