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Abstract Human beings are a largely untapped source
of in-the-loop knowledge and guidance for computational
learning agents, including robots. To effectively design
agents that leverage available human expertise, we need to
understand how people naturally teach. In this paper, we
describe two experiments that ask how differing conditions
affect a human teacher’s feedback frequency and the com-
putational agent’s learned performance. The first experiment
considers the impact of a self-perceived teaching role in con-
trast to believing one is merely critiquing a recording. The
second considers whether a human trainer will give more
frequent feedback if the agent acts less greedily (i.e., choos-
ing actions believed to be worse) when the trainer’s recent
feedback frequency decreases. From the results of these ex-
periments, we draw three main conclusions that inform the
design of agents. More broadly, these two studies stand as
early examples of a nascent technique of using agents as
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1 Introduction

Before agents begin learning a task, much engineering by
technical experts goes into the agents’ task-specific designs.
However, human beings are a largely untapped source of
knowledge and guidance during the learning process. We
aim to create agents with relatively natural interfaces that
allow anyone—including non-programmers—to guide the
learning process of an agent. But to effectively design such
agents, we need to understand how people naturally teach.

In this paper, we ask how human teachers can be af-
fected by changes in their beliefs and in the pupils’ behav-
iors. Specifically, we examine effects on the frequency with
which teachers give feedback and the quality of the behavior
learned from their feedback. We describe two experiments,
each of which addresses this question by using a compu-
tational agent as the pupil of a human subject. The agents,
described in Sect. 2, are built within the TAMER framework
for agents that can be shaped by human trainers’ reward and
punishment signals [18]. For these experiments, we vary the
conditions under which the humans teach and then look for
differences in training statistics and agent performance.

In what we call the critique experiment, which tests the
impact of taking on the role of teacher, there are two con-
ditions: one in which subjects know the agent is learning
from their feedback and another in which subjects believe
they are merely critiquing a recording of a learning agent.
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We predicted that the participants’ assumed roles would af-
fect what the agents learn from the resulting feedback and
the frequency at which trainers give feedback. Against our
intuitions, the results of the critique experiment indicate that
changing the trainer’s role has little on these two dependent
variables. These results suggest that either the quality of the
trainers’ feedback was not greatly altered by whether they
considered themselves to be teaching or that the learning
agents were robust to such changes in training.

Attempting to directly study the relationship between
trainer engagement and the agent’s learned task perfor-
mance, we conducted a second experiment wherein the
agent in one condition directly responds to changes in recent
feedback frequency. This experiment, called the feedback-
frequency experiment, considers whether a human trainer
will give feedback more frequently if the agent acts less
greedily (i.e., “exploring” or choosing actions believed to
be worse) when the trainer’s recent feedback frequency
decreases. The results indicate that tying non-greedy ac-
tion to a trainer’s feedback frequency increases the overall
frequency—and thus, the number of learning samples avail-
able. However, the effect on performance is unclear, which
we discuss later. The feedback-frequency experiment yields
two contributions that inform the design of agents than can
learn from human teachers.

First, these results provide a strategy for increasing
trainer engagement—lowering performance, especially when
engagement drops—that could be incorporated in any agent
that learns from a human teacher. Traditionally, learn-
ing agents receive feedback from encoded objective func-
tions, called “reward functions” in reinforcement learning
(RL) [34]; reward functions give regular feedback after each
discrete time step. But human teachers are more complex
than an encoded objective function—creating new chal-
lenges for learning—and yet can be more effective, espe-
cially given their ability to adapt to their pupils. The ex-
periment described here adds to the currently small base of
knowledge on how to create agents whose learning algo-
rithms and behavior are designed with a respect for human
trainers’ strengths and limitations.

The second contribution of the feedback-frequency ex-
periment is a proof-by-example that the common practice
of categorizing all actions as either exploitation—greedily
choosing actions currently thought to be best for the task—
or exploration—trying other actions to learn whether they
are actually superior—is insufficient when a human is in the
learning loop. Since the human is reacting and adapting to
the agent, the agent can take actions to intentionally affect
the human’s behavior. Rather than exploiting to get the high-
est appraisal or exploring to try new actions, the agent’s ac-
tions might instead be used to communicate to, or even re-
inforce behavior of, the human trainer.

Additionally, this paper comprises a more general con-
tribution. Social agents, including social robots, provide an

emerging opportunity to study human social behavior [6, 9].
A computational agent’s behavior can be parametrized and
recorded much more thoroughly than can a human’s behav-
ior. Thus such studies allow more controlled conditions at
the potential cost of less authentic interactions, yielding a
different perspective from studies that use humans opposite
the subjects, a perspective that has its own strengths and
weaknesses. As our final contribution, these experiments il-
lustrate this new experimental method, providing an instan-
tiation of the previously unexplored version in which the
agent learns during an interaction that is itself affected by
the learning (i.e., socially-guided machine learning [36]).
Also, we discuss the motivation for studying human behav-
ior through human-agent interaction in the context of these
experiments.

The remainder of the paper is organized as follows. In
Sect. 2, we describe the learning paradigm and algorithm
used in the experiment. Section 3 explains the experimental
designs and results, which are then discussed in Sect. 4 along
with our observations from the general practice of studying
human behavior with interactive agents. Section 2.1 contains
a discussion of related work.

2 Background and Related Work

In this section, we motivate our experiments, first by dis-
cussing related work in Sect. 2.1. Then in Sect. 2.2 we give
the background on TAMER and the task that the TAMER

agents are taught.

2.1 Related Work

2.1.1 Agents Learning from Human Teachers

The field of agents that learn from humans is young but al-
ready has a rich and varied literature. The most commonly
studied mode of teaching is demonstration, for which Argall
et al. [3] wrote an excellent survey. Successes of learning
by demonstration include the domains of autonomous driv-
ing [27], multi-robot coordination [8], robot soccer [13], and
helicopter flight [1]. Other modes, though given less atten-
tion, have also been studied: learning from advice [21, 24],
learning from numeric feedback or reward [15, 18, 37, 40],
and allowing the human to shape the agent’s learning en-
vironment, facilitating the learning process [32, 38]. For a
more thorough review of the general topic of agents learn-
ing from human teachers, we refer the reader to Knox and
Stone [18].

The concept of an agent using actions to affect a human
teacher, though usually left out of the conversation about
such human-oriented learning agents, has been explored pre-
viously. Nicolescu and Mataric [25] speak of “communica-
tion by acting”, which is using behavior to communicate in-
tentions and needs. They specifically consider how a robot
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can ask for help after failure and conduct experiments in
which the robot repeatedly tries to execute a failed behav-
ior to signal a need for help. A difference between their ap-
proach and ours is that, in their work, the human’s requested
assistance comes after learning, so the robot improves its
current performance through assistance but it does not im-
prove its autonomous performance.

2.1.2 How Humans Teach

The general question of how humans teach has been studied
extensively. We review some of the more relevant work here.

Some work has specifically examined how humans teach
social robots or other agents. Thomaz and Cakmak [38] ex-
amined how people teach a robot affordances (i.e., action-
effect relationships) to manipulate objects. Among their
findings, they observed that humans point out affordances
that are rare in systematic exploration of the object configu-
ration and action spaces. They also found that people often
remove the object before the robotic action completes, pos-
sibly indicating that the remaining part of the action would
not have caused a desirable effect. Kim et al. observed how
people talk while teaching a robot and found that “people
vary their vocal input depending on the learner’s perfor-
mance history” [17]. In work by Koachar et al. [16], human
subjects teach a complex task to a fake agent in a Wizard-of-
Oz experiment. The teachers could give reward-based feed-
back, give demonstrations, teach concepts by example, and
test the agent’s skills. The authors found that “teaching by
[feedback] was never employed by itself and in the 82 % of
cases where it was used, it followed another teaching type
in all but 2 cases. 58 % of the teachers who used feedback
used it exclusively after testing”. A consistent finding across
all of these studies is that human teachers break implicit and
explicit expectations built into the learning system (e.g., re-
moving an object before an action is complete), suggesting
that agents should be robust to at least some such viola-
tions.

Looking particularly at teaching by explicit reward and
punishment, there has been much research on how humans
and other animals learn [5] and, complementarily, how peo-
ple should teach [28, 29]. However, little has been said about
how people actually do teach by explicit reward and punish-
ment and, complementarily, how pupils should learn from
it—as this paper does. One exception is by Thomaz and
Breazeal [37], who had people teach a task to a software
agent by reward and punishment (the agent also had another
feedback source). They found that people gave more reward
than punishment and that people appeared to be using the
feedback mechanism to give guidance to the agent, again
interestingly breaking protocol.

2.1.3 Studying Human Social Behavior with Human-Agent
Interaction

Here we discuss the budding practice of studying human-
human interaction using human-agent interaction experi-
ments. We do not include in this category studies that draw
conclusions that are only of interest to the human-robot in-
teraction or human-agent interaction communities. We save
our discussion of the motivation for using agents in lieu of
humans for Sect. 4.4, where we can interweave our experi-
mental results.

Replacing humans with agents in experiments on hu-
man social behavior has been proposed by numerous re-
searchers [6, 9, 22]. Of the relevant social robotics stud-
ies which we are aware, all used both human-human
and human-robot interaction [14, 30]. In one [23], peo-
ple converse with either a human, a Wizard-of-Oz robot
(i.e., a robot controlled by a human but pretending to be
autonomous), or an openly remote-controlled robot. Re-
searchers examined which direction subjects moved their
eyes when breaking eye contact after having been asked a
question. The results on the effect of which conversational
partner was used were inconclusive, which the authors at-
tribute to high variance and a small sample size. In another
study [11], each subject watched two videos, one of a col-
laborative human assistant and another of a collaborative
robot assistant. Afterwards, subjects rated the collaboration
on multiple criteria, such as comfort with and trust in the
assistant. Subjects were divided along two additional vari-
ables. Along one of these variables, subject nationality, re-
sults on collaboration ratings were consistent across human
and robot versions (e.g., Chinese subjects gave higher trust
ratings for both human and robot assistants than did sub-
jects from the US). The ratings were not consistent along
the other variable, how strongly the subject is prompted to
consider the assistant to be part of her ingroup (i.e., a group
that the subject strongly identifies with).

From these studies, we see two patterns. First, the robots
and humans were not perfectly interchangeable as social
partners. However, the difference in their effects was usu-
ally by whether results were significant, not by significant
results in opposite directions. And the results did agree a
fair amount. Overall, their specific robotic partners created
interactions that resembled those with humans in some situ-
ations, but not fully. We note, though, that results from stud-
ies with human actors following scripted interactions—as
the human partners in the above social robotics experiments
do—differ in their own way from the ground truth of au-
thentic human-human interaction. The second pattern is that
none of these experiments use agents to fully replace hu-
mans where their use would be problematic or to perform
analysis that would be impossible with humans. Among pre-
vious work that employed computational agents or robots to
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study human interaction, our experiments stand out for ran-
dom assignment and controls, for the relatively large sample
sizes, and for the complexity of our agents.

2.2 Background

2.2.1 The TAMER Learning Agent

The experiments carried out in this paper involved human
subjects training a computational learning agent that im-
plements the TAMER framework, employing the algorithm
published by Knox and Stone [18]. TAMER, explained be-
low, has two main motivations: (1) to empower people—
regardless of programming ability—to designate correct be-
havior, which will often be specific to the person training
and (2) to speed learning compared to traditional reinforce-
ment learning by transferring human knowledge about the
task to an agent.

The TAMER framework is an answer to the Interactive
Shaping Problem [18]. The Interactive Shaping Problem
asks how an agent can best learn to perform a task given only
real-valued feedback on its actions from a human trainer.
This problem is put formally as follows.

The Interactive Shaping Problem Within a sequential
decision-making task, an agent receives a sequence of state
descriptions (s1, s2, . . . where si ∈ S) and action opportu-
nities (choosing ai ∈ A at each si ). From a human trainer
who observes the agent and understands a predefined per-
formance metric, the agent also receives occasional positive
and negative real-valued reward signals (h1, h2, . . .) that are
positively correlated with the trainer’s assessment of recent
state-action pairs. How can an agent learn the best possible
task policy (π : S → A), as measured by the performance
metric, given the information contained in the input?

Human reward is delivered through push buttons, spoken
word, or any other easy-to-learn interface.

The TAMER framework is designed around two insights.
First, when a human trainer evaluates some behavior, she
considers the long-term impact of that behavior, so her feed-
back signal contains her full judgement of the desirability of
the targeted behavior. Second, a human trainer’s feedback is
only delayed by how long it takes to make and then commu-
nicate an evaluation. Thus, credit from human reward can be
assigned within a small window of recent actions. Though it
is tempting to treat human reward1 as reward within a rein-
forcement learning framework, these insights suggest a dif-
ferent approach. In reinforcement learning, agents use re-
ward to estimate return, the long-term accumulation of re-
ward. These estimates of return are considered the values of

1Following common practice in reinforcement learning, we use “re-
ward” to mean both positively and negatively valued feedback.

Fig. 1 A screenshot of
RL-Library Tetris

actions. However, human reward is more qualitatively anal-
ogous to a trivially delayed, noisy sample of expected return
from the targeted behavior given the trainer’s expectations
of future behavior than it is to reward in an RL framework.2

Consequently, a TAMER agent does not try to predict and
maximize long-term human reward. Instead, it tries to pre-
dict and maximize immediate reward, converting an appar-
ent reinforcement learning problem into a supervised learn-
ing problem (with some credit assignment techniques which
are described in past work on TAMER). Put simply, a TAMER

agent assumes that the trainer has an internal feedback func-
tion, H : S × A → R, and treats feedback as labels on state-
action pairs, providing samples to learn Ĥ , an approxima-
tion of H , via supervised learning. If acting greedily, the
agent chooses the action that maximizes the output of Ĥ

given the current state. In practice, all TAMER agents thus
far have been greedy, since the trainer can punish the agent
to make it try something different, making other forms of
exploration less necessary.

Our experiments indicate that humans can train TAMER

agents to perform tasks well (but imperfectly) within shorter
time than a traditional RL agent would learn, reducing the
costs of poor performance during learning.

2.2.2 The Experimental Task: Tetris

In this section, we describe how our human subjects trained
TAMER agents and the task-specific agent implementations.
Each TAMER agent was trained to play Tetris (Fig. 1) as
implemented in RL-Library [35] (with some visual adap-
tations),34 a well known, computer-based puzzle game. In

2The trainer’s assessment of return is, of course, dependent on her
understanding of the task and expectation of future behavior, both of
which may be flawed and will likely become more accurate over time.
3Tetris is one of five task domains for which TAMER has published
results [18–20, 33].
4The specification of Tetris in RL-Library follows does not differ from
that of traditional Tetris, except that there are no points or levels of
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Tetris, pieces of various shapes fall from the top of the
screen, and the player’s task is roughly to fit each piece
with previous pieces below to make solid horizontal lines.
Each such line disappears upon filling its last hole(s), and
the pieces above move down one position. Play ends when a
piece cannot be placed because previous pieces are stacked
too high, and the object of Tetris in our implementation is to
clear as many horizontal lines as possible before play ends.

In this TAMER algorithm, the agent’s action is a choice
among potential piece placements, not each movement or
rotation of a piece. Ĥ is represented by a linear model over
46 features that are extracted from a piece placement’s effect
on the Tetris board (i.e. state-action features). For the full
time that the agent places the current piece, the trainer can
give reward to the previous piece’s placement; thus, credit is
trivially assigned to the previous action, which is effective
with slow action frequencies that give the trainer plenty of
time to respond. Each placement results in a set of features
and a human reward value that together make a sample for
supervised learning. The specific learning algorithm is in-
cremental gradient descent. For more details on the TAMER

agent’s algorithm, consult Knox and Stone [18].
Subjects observed their agent’s play on a computer screen

and delivered real-time feedback, targeting the most recent
block placement, through two keys. One key corresponded
to positive feedback and the other to negative feedback, and
each press of the button increased the feedback’s intensity
up to a predefined limit, yielding integer feedback values
in the range [−4,4]. Subjects were given a short practice
period to adjust to the training task before starting the actual
training.

3 Experimental Design and Results

In this section, we discuss the designs and results of the two
experiments. We first describe aspects of experimental de-
sign that were common to both experiments.5

We evaluated participants’ teaching with descriptive
analyses as well as simulations of their learned models’
(Ĥ s’) performances. For descriptive analyses, we consid-
ered the human responses’ frequency. All descriptive analy-
ses were conducted over time in bins defined by intervals of
80 time steps. In other words, the first bin considered time
steps 1 to 80, the second considered steps 81 to 160, and so
on.

increasing speed, omissions that are standard in Tetris learning litera-
ture [4]. We use RL-Library for convenience and its compatibility with
RL-Glue, a software specification for reinforcement learning agents
and environments.
5Instructions given to subjects can be found at http://www.cs.utexas.
edu/~bradknox/papers/12ijsr.

Simulations were performed offline for each subject at
80 time-step intervals, fixing Ĥ and using a greedy policy—
and thus fixing the learned behavior—after 80,160, . . . time
steps of training and then testing the fixed behavior’s per-
formance over 20 games (i.e., episodes). For our perfor-
mance metrics, we use the mean number of lines cleared per
episode by a TAMER agent over the 20 games in simulation
at each time interval. This analysis evaluates the quality of a
subject’s training by simulating the performance of the fixed
policies shaped from their feedback.

Subjects were drawn from the undergraduate community
at the University of Texas at Austin.

3.1 The Critique Experiment: Teaching vs. Critiquing

In our first of two experiments, the critique experiment, we
tested how donning the role of teacher affected subjects’
feedback frequency and the effectiveness of their teaching.

3.1.1 Design

Subjects were randomly assigned to one of two conditions:
Teaching or Critiquing.

1. Teaching (n = 27): Subjects were aware that the agent
learns from his or her feedback.

2. Critiquing (n = 30): Subjects were told that they should
critique a recording of an agent learning.

The authors’ hypotheses about the conditions’ effects
on feedback frequency and agent performance varied. The
dominant hypothesis was that when teaching, humans would
satisfice aggressively, dramatically reducing their feedback
once the agent appeared to be doing reasonably well. This
reduction in feedback might harm the agent’s performance
compared to one that received a consistent level of feedback.
If the non-teaching subjects trained better agents, it would
suggest that human trainers need to be fooled into providing
large amounts of feedback over time to maximize a TAMER

agent’s performance. Another intuition was that the Teach-
ing subjects would be more engaged and attentive, leading to
a contrasting hypothesis that the teaching group would give
more feedback and achieve better performance. The plausi-
bility of either result motivates this experiment.

3.1.2 Results

Our results focus on the question of whether frequency of
feedback and agent task performance differed between the
two conditions. We found that they did not differ. More de-
tailed results are below. For our analyses, one subject in each
condition was removed for not responding during the exper-
iment, and two subjects were removed from the Critiquing
group for not completing at least 720 time steps of training
(as did the remaining 57 subjects).

http://www.cs.utexas.edu/~bradknox/papers/12ijsr
http://www.cs.utexas.edu/~bradknox/papers/12ijsr
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Fig. 2 Feedback frequency from the human trainer over 9 bins of 80
consecutive time steps each. On all plots with error bars, the bars show
standard error

Fig. 3 Performance (lines cleared per game) of policies fixed at the
end of 9 intervals, each 80 time steps in length. In other words, the
tested agents have learned from the first 80,160, . . ., and 720 time steps

Plots of feedback frequency and performance by condi-
tion are respectively shown in Figs. 2 and 3. A 2 (condi-
tion) × 9 (interval) repeated measures ANOVA indicated
no significant main effect of condition nor an interaction
of interval and condition for the dependent measure of fre-
quency of responding (all F [2,55] < 0.83, p > 0.60). Con-
sidering agent performance (i.e., lines cleared by the sim-
ulated TAMER agent), there was no significant main effect
of condition nor an interaction of interval and condition (all
F [2,55] < 1.14, p > 0.33).

Seeking to assess how similar the effects of the two
conditions are, we calculated a Bayes factor for the data.
A Bayes factor is the odds that the null hypothesis is true
when the alternative is a distribution over alternative hy-
potheses. We examined performance at the end of the nine
intervals, giving something akin to a final skill level, and
feedback frequency over all intervals. Using an effect-size
scaled parameter of 1 for specifying the distribution of al-
ternate hypotheses, we calculate the JZS Bayes factor to be
4.28 for performance and 4.67 for feedback frequency [31].
Thus, under this parameter—which is recommended as a de-
fault parameter because it favors neither outcome—the null
hypotheses for both metrics is more than four times more
probable than the alternatives, given the data. A Bayes factor

above 3 is commonly considered substantial evidence that
the null hypotheses is approximately true, giving us confi-
dence to conclude that the subjects’ roles had similar effects.

Though we are not focusing on the difference in the
amounts of positive and negative reward given, we report
that the mean absolute value of positive reward per time step
was greater than that of negative reward across all conditions
of both experiments (all p < 0.025 in paired t-tests). This
finding confirms observations by Thomaz and Breazeal [37].

In summary, the difference in participants’ roles did not
significantly affect any of the dependent variables. Looking
at performance, a Bayes factor analysis suggests that simi-
larity between the two groups can explain the lack of signif-
icance, as opposed to merely too few subjects or too high of
variance.

This critique experiment influenced the following exper-
iment on feedback-frequency in several critical ways. First,
because teaching and critiquing trainers behaved and per-
formed similarly, all conditions in the feedback-frequency
experiment involve a teaching role for the subject. Second,
because subjects’ frequency of responding was quite high in
the critique experiment, we changed the subjects’ instruc-
tions from “If it has made a [good/bad] move, press. . . ” to
“If you feel it is necessary to [reward/punish] it, press. . . ”.
From this change in instructions, we hoped to both lower
their baseline frequency and give subjects more leeway to
determine their own frequency, two consequences that we
expected to increase any differences in frequency created by
the different conditions. Lastly, after the conditions of this
critique experiment did not significantly affect the rate of
feedback that some authors predicted would improve per-
formance, we were motivated to more directly manipulate
feedback frequency by making the agent react to it.

3.2 Feedback-Frequency Experiment: Varying Action
Greediness with Feedback Frequency

In this section, we describe the feedback-frequency experi-
ment, which investigates a human-agent interaction scenario
in which the computer agent reacts to waning human feed-
back by behaving worse. By controlling the parameters of
the computer agent’s reaction to its human trainer’s fre-
quency of feedback, we were able to evaluate the human
behavioral response under three conditions. The specifica-
tion of conditions below relies on the term greedy, which in
this context means choosing the action a that maximizes a
prediction of immediate human reward, argmaxa[Ĥ (s, a)].
To be concise and ease reading, we sometimes refer to non-
greedy actions as “misbehavior”, since agents are taking ac-
tions that they currently believe to be suboptimal (though
they may actually be optimal).
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3.2.1 Design

Subjects were randomly assigned to one of three conditions:
Reactive Non-greedy, Greedy, or Yoked Non-greedy.

1. Greedy (n = 19): The TAMER agent always chose the ac-
tion with the highest predicted feedback value.6

2. Reactive Non-greedy (n = 30): The TAMER agent’s level
of greediness was negatively correlated with the recency-
weighted frequency of human feedback. (The frequency
is “recency-weighted” because more recent opportunities
for feedback are weighted more heavily in the frequency
calculation.) For this group and the Yoked Non-greedy
group, details about calculating feedback frequency and
its effect on action selection are described below in this
section.

3. Yoked Non-greedy (n = 30): To separate the effects of
general misbehavior from misbehavior that occurs in re-
sponse to the trainer, we added a third group in which
agents explored without being tied to their respective
trainers. In this Yoked Non-greedy group, the TAMER

agent used the frequency from a matched trainer from the
Reactive Non-greedy group instead of its own trainer’s
feedback frequency. In other words, we assigned each
member of this group to a member of the Reactive Non-
greedy group. The agent explored based on feedback fre-
quency, identically to the Reactive Non-greedy group,
except that the frequency at step i was determined from
the feedback history of the matched subject from the Re-
active Non-greedy group rather than the current subject’s
feedback history. Thus, whereas the agent acted with
varying degrees of misbehavior, the level of misbehavior
was not causally determined by the subject’s behavior.

We hypothesized that the Reactive Non-greedy group
would have the highest feedback frequency as well as the
best performance. Our intuition was that, in line with the id-
iom “The squeaky wheel gets the grease” and popular wis-
dom that misbehavior can be a cry for attention, an agent that
“misbehaves” when feedback frequency diminishes will be
effectively training the trainer to give more feedback. And
given more feedback, the agent would have more training
samples to learn from, resulting in better task performance.

Calculating Frequency To calculate a trainer’s recency-
weighted feedback frequency, each feedback instance is ex-
ponentially decayed over time. Thus, at each time step,
we calculate a := [decay ∗ a] + (feedback �= 0) and b :=
[decay ∗ b] + 1, where a and b are initialized to zero and

6The Greedy group can be considered similar to the Teaching group
from the critique experiment. The two groups’ instructions do contain
differences, but both groups have identical TAMER agent algorithms
and subjects are aware that they are teaching.

Fig. 4 An example trajectory of recency-weighted frequency over the
first 40 time steps of training. The frequency varies dramatically, a con-
sequence of the small decay factor, 0.2. In this example, the trainer
refrains from giving feedback only six times

Fig. 5 Probability distributions over the five possible actions at differ-
ent recency-weighted feedback frequencies

feedback �= 0 resolves to 1 when feedback was given and 0
otherwise. Together, a and b define frequency: freq := a/b.
In our experiments, the decay parameter was 0.2, which
heavily weights the last few actions. An example frequency
trajectory can be seen in Fig. 4.

Choosing Actions Based on Frequency Given a frequency,
the agents in both non-greedy conditions choose actions.
To choose, an agent ranks all available actions according
to their predicted human reinforcement, Ĥ (s, a), and picks
out five actions from that ranking: the best, the second-best,
the action at the first quartile, the action at the median, and
the worst. (Ambiguous quartile and median choices go to
the better-ranked action.) Then, the agent chooses randomly
from these five actions according to a probability distribu-
tion conditioned on frequency, where lower frequencies gen-
erally result in worse-ranked action choices. The distribu-
tions can be seen in Fig. 5.
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Fig. 6 Feedback frequency from the human trainer over 9 bins of 80
consecutive time steps each

3.2.2 Results

We performed the same descriptive and model-based analy-
ses as we did for the previous critique experiment.7 An ex-
ception though, is that we find significant results here and
thus do not perform the Bayes factor calculation, which we
used to determine how similar the data was between con-
ditions after finding a complete lack of significance. One
Greedy subject, three Reactive Non-greedy subjects, and
five Yoked Non-greedy subjects were removed for respond-
ing insignificantly during the experiment. Also, one Greedy
subject, one Reactive Non-greedy subject, and four Yoked
Non-greedy subjects were removed for training for less than
the 800 time steps we used for analysis. For the two non-
greedy conditions, subjects matched to removed subjects
were also removed from analysis.

If non-greedy actions increase feedback frequency and
tying non-greedy actions to trainer’s recent feedback fre-
quency further increases subsequent frequency, we expect
the Reactive Non-greedy group to have the highest fre-
quency, followed by the Yoked Non-greedy group, with the
Greedy group having the lowest frequency. And since fre-
quency increases the number of learning samples, we expect
the same ordering of performance.

Trainer’s feedback frequencies are shown in Fig. 6, and
performance after each training interval is shown in Fig. 7.
Note that the change in instructions described at the end of
Sect. 3.1.2 was effective: the baseline feedback frequency,
given by the Greedy group, is lower than the almost equiva-
lent Teaching group in the critique experiment.

Surprisingly, 2 (condition) × 10 (interval) ANOVAs
comparing the performance (i.e., lines cleared) of the
Greedy group over all intervals to that of the Reactive Non-
greedy and Yoked Non-greedy groups found significant ef-
fects by condition (p = 0.015 and p = 0.024, respectively),

7Performance is again tested offline, not during training, and the testing
policy is greedy regardless of condition.

Fig. 7 Performance (lines cleared per game) of policies fixed at the
end of 9 intervals, each 80 time steps in length

indicating superior learned performance within the greedy
group. The two non-greedy groups were not significantly
different. Also, 2 × 10 ANOVAs comparing trainer’s feed-
back frequencies found no significant differences.

Results for Good Trainers Only Before acting intelli-
gently, these learning agents go through a period of ini-
tial learning, during which their actions are generally of
low quality. Additionally, many agents are never trained to
a level at which greedy actions are generally good. Tak-
ing non-greedy actions when greedy actions themselves are
not good lacks the qualitative characteristic on which we
are focused: non-greedy action corresponding to decreased
quality of action. Therefore, we repeat the analyses above,
only examining the subset of subjects who were able to train
their agents to consistently clear more than 10 lines on av-
erage across multiple time intervals. Additionally, we only
use data starting at the third interval, where the percentage
of agents that pass the 10-line standard first surpasses 90 %
(after pass rates of only 58.3 % and 72.2 % in the first two
intervals), never dropping below after. The 10-line threshold
was chosen for its position in the valley of the bimodal dis-
tribution of agent performance across subjects.8 This more
selective analysis gives a different perspective that is more
focused on the effect of “misbehaving” to affect the trainer.

After removing low-performing subjects and all subjects
that were matched to those low-performing subjects, the
condition sizes were Reactive Non-greedy, n = 10; Greedy,
n = 16; and Yoked Non-greedy, n = 10. The feedback fre-
quency by condition across time intervals for this smaller
set of subjects is shown in Fig. 8. Compared to the full set
of subjects, all conditions have generally higher feedback
frequencies. However, this frequency increase is more pro-
nounced in the two non-greedy conditions. Further, the Re-
active Non-greedy condition now results in more frequent

8Illustrating the bimodality of performance, there were 79 subjects
across conditions. In the 9th testing interval, 23 agents clear between
0–1 lines; 47 clear more than 100. Only 2 agents clear 5–20 lines.
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Fig. 8 Figure 6 with low-performing trainers removed

feedback than the Yoked Non-greedy condition. Despite the
small number of subjects being considered, the Reactive
Non-greedy group’s mean feedback frequency over intervals
3–10 has marginal significance (p < 0.1) in comparison to
the lower feedback frequency of the Greedy group. Addi-
tionally, a non-parametric analysis of the same data is nearly
significant, with an upper confidence bound of 0.83 for the
Greedy group and a lower confidence bound of 0.82 for the
Reactive Non-greedy group. Therefore, we expect that in-
creasing the number of subjects would quickly strengthen
the significance of the difference in feedback frequency.

The performance of these subjects across conditions is
much more similar than in the full set of subjects and is
no longer significantly different. However, removing sub-
jects based on performance clearly biases group perfor-
mance. This bias is motivated for analyzing feedback fre-
quency but not for performance, and we therefore only base
our performance results on the full set of subjects. We can
say, though, that these results add further evidence (though
biased) that increased feedback frequency and the conse-
quently increased number of learning samples do not result
in better performance in this experiment.

4 Discussion

In this section, we interpret and discuss the results of the
experiments in Sect. 3. The first subsection draws a conclu-
sion on agent design from the critique experiment; the sec-
ond subsection does likewise from the feedback-frequency
experiment. We then discuss the feedback-frequency exper-
iment’s implications for the explore-exploit dichotomy that
is pervasive within the field of learning agents. Lastly, we
discuss the new technique of using social agents to study
human behavior, using our experiments as examples and de-
scribing how these results may also be of interest outside of
artificial intelligence communities.

4.1 Honesty Is Still the Best Policy

When agents learn to perform tasks, one clear objective is
to maximize performance. The results from the critique ex-

periment indicate that, contrary to the hypothesis that hu-
man trainers would need to be deceptively told that they are
not teaching to do their best training, the human-agent sys-
tem performs similarly when the human knows that he is
engaged in a training session. Either the subject’s role had
little or no effect on his feedback, or the TAMER agent was
robust to differences in feedback.

In addition to the performance objective that we explic-
itly study, it is also important to respect the desires and needs
of humans. Deceiving human trainers to get the best perfor-
mance is an ethically questionable trade-off. The results pro-
vide evidence that disclosing to the trainer that he is teaching
maximizes both crucial objectives, performance-based and
humanistic.

4.2 A Tool for Increasing Feedback

When numeric feedback comes to an agent from an en-
coded reward function instead of a human, the problem is
often framed as a reinforcement learning problem. These
problems are usually formalized as Markov Decision Pro-
cesses (MDPs). In an MDP, reward has a static distribution
of frequency and quality. In contrast, human reward can be
affected along both of these dimensions. From this obser-
vation, one may notice that one way to give highly effec-
tive feedback (though possibly imperfect feedback with cer-
tain function approximators) for a TAMER agent would be
to give feedback at every time step and have as its value
the expected return of MDP reward under the optimal pol-
icy from the most recent state-action pair, where the MDP
reward follows the task’s objective and credit is assigned
only to the preceding time step. These two characteristics of
feedback—frequency and quality, or, equivalently, the num-
ber of learning samples and the quality of their labeling—
comprise two dimensions along which a particular human
trainer’s feedback can be improved.

The feedback-frequency experiment demonstrates one
on-line technique for increasing the frequency of human
feedback: lowering action quality. More specifically, when
examining only the successful trainers (for which non-
greedy actions would actually look worse), tying the ac-
tion quality to the trainer’s recency-weighted frequency fur-
ther increased feedback frequency. Considering that there
are likely other techniques that increase either frequency or
quality of feedback, one product of our results is a proof-
of-concept that this broader category of techniques exists,
though the extent of its breadth is an open question. Also,
the concept of an agent manipulating the trainer to improve
feedback can be generalized to other modes of teaching, in-
cluding demonstrations, which can also vary by frequency
and quality.

Contrary to our expectations, though the agents’ manip-
ulations increased feedback frequency, they did not improve
performance and even decreased it among the full set of sub-
jects. Exploring created more learning samples, but we sus-
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pect these samples were less useful than those experienced
by the Greedy group. We see two plausible explanations: the
learning samples were in a less useful area of the state-action
space, or the quality of trainer feedback worsened. The intu-
ition behind the first potential explanation is that the learn-
ing samples created during greedy behavior help distinguish
between the best few actions, whereas non-greedy behav-
ior created samples that help distinguish between mediocre
or worse actions, a type of differentiation that does not aid
an agent trying to choose the best action. Further, the sam-
ples from nongreedy actions may have even been directly
harmful; the representation of Ĥ is not highly expressive,
and more accurately modeling reward for non-greedy ac-
tions likely lessens the accuracy of modeling high-quality
actions. The other potential explanation is that the quality
of the feedback within the non-greedy conditions suffered
because of trainer frustration or some other effect of misbe-
havior on the trainer. Further analysis of the data might shed
light on which of these explanations is correct. For instance,
we could test each agent’s performance with the same learn-
ing samples, except we label each sample with a static feed-
back function instead of with the variable set of humans
that did label the samples. This relabeling would control for
quality of feedback, directly testing how much the differ-
ence in the samples’ locations in state-action space would
affect performance. More generally, whether misbehavior
can be used to increase interaction and learned performance
is a promising question for future inquiry.

The agent’s frequency-tied action selection can least
speculatively be framed as a “manipulation”. We might also
consider it to be a form of communication with the human
trainer, though we are careful not to imply that the trainer
consciously understood some message from the frequency-
tied actions, which she may or may not have. Another spec-
ulative but plausible interpretation is that when the agent
lowers its action quality after the trainer’s feedback drops in
frequency, the human is being punished for inattentiveness.
This interpretation is more compelling if the human trainer
is emotionally vested in the agent’s performance, which fits
anecdotally with comments made by subjects and the au-
thors’ experience in informally training agents themselves.

One lesson of this feedback-frequency experiment is that
agent designers should be careful not to make the mistake
of considering pedagogy to be a single-directional manipu-
lation, that though teacher and student do interact, it is the
student who is significantly changed through the interaction.
On the contrary, the student has expectations of the teacher
and beliefs about how the teacher should meet his or her
needs, and an effective student will teach the teacher how to
meet those needs.

4.3 Non-greedy Action Is not Necessarily Exploration

When referring to agents that learn to estimate some notion
of the relative values of various state-action pairs (i.e., not

policy-search learners), researchers generally consider ac-
tions to be either exploratory or exploitative. This dichotomy
between exploration and exploitation holds strictly in tradi-
tional reinforcement learning, where an action a is exploita-
tive if it is chosen greedily, such that (a = argmaxa Q(s, a)),
and contrapositively any action chosen non-greedily, typi-
cally resulting in a �= argmaxa Q(s, a), is exploratory [34].9

At the intersection of learning agents and human-agent
interaction are agents that, like TAMER agents, learn in-
teractively from human teachers. In past work, many of
these agents only exploit [2, 18, 26] and some, espe-
cially those that use reinforcement learning, explore or ex-
ploit [15, 37, 40]. However, we will argue that the non-
greedy actions taken by agents in the Reactive Non-greedy
group of the feedback-frequency experiment are neither ex-
ploration nor exploitation.

4.3.1 Is It Exploitation?

Retaining the notion that exploitation involves greedy ac-
tion selection, the Reactive Non-greedy group’s non-greedy
behavior was not exploitation by definition. This conclusion
generalizes to any agents that learn the values of state-action
pairs for the task and cannot model the human as part of
their value function, though they may be able to model the
impact of their actions on the trainer’s feedback frequency
and quality.

4.3.2 Is It Exploration?

In the terminology of reinforcement learning, any action a

such that a �= argmaxa Ĥ (s, a) is commonly referred as “ex-
ploration”. But exploration in reinforcement learning, and
in general if we want to keep the term close to its col-
loquial meaning, is undertaken to learn more about state-
action pairs which are not experienced sufficiently during
greedy behavior to create the desired level of behavioral im-
provement. The Reactive Non-greedy group in the feedback-
frequency experiment may have received a wider range of
state-action pairs in their learning samples as a result of their
non-greedy behavior, but they also affected their feedback
source. Their trainers’ feedback frequency, on average, was
higher than that of other groups, sometimes significantly so,
giving the agents motivation beyond exploration to act non-
greedily.

Through its non-greedy actions, an agent in the Reac-
tive Non-greedy group does receive information about state-
action pairs that it would likely not encounter during greedy

9Though exploration is often considered equivalent to non-greedy ac-
tion, this definition does not fit all instances of its use in RL. For
instance, an agent that employs an exploratory policy might have a
greedy policy that sometimes agrees on what action to select. How-
ever, this is a semantic point that does not affect our assertion that the
comprehensive dichotomy of explore/exploit is insufficient.
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actions. So, in a sense, exploration does occur. But explo-
ration is not the only effect, and in an agent that predicts
the effects of its actions and acts with goals, the exploration
may be merely incidental to the intended result of increas-
ing feedback frequency. Thus, while the agents’ non-greedy
actions had exploratory consequences, calling such actions
exploration is incomplete, obscuring their desirable, non-
exploratory effects.

4.3.3 Non-greedy Action to Manipulate the Trainer

There is more than one reason to act non-greedily. Exploring
is one reason, as is increasing a trainer’s feedback frequency.
If the learning agents community intends to embrace the
use of humans as teachers for agents, it might reconsider
the common practice of using the word “exploration” syn-
onymously with non-greedy actions. Though exploration re-
mains a critical form of non-greedy action, our results show
that when a human trainer is in the learning loop, there are
reasons to act non-greedily besides exploration.

4.4 Illustration of Employing Human-Agent Interaction to
Study Human Behavior

In this subsection, we conduct a more general discussion on
the merits of using social robots or social software agents to
study human behavior outside of human-agent interaction.
Our experiments serve as motivating examples in this dis-
cussion.

Computational agents, both robotic and simulated, com-
prise an emerging tool for the behavioral sciences. In cur-
rent practice for experiments on human behavior that re-
quire social interaction and constrained behavior on one
side of the interaction, a human fulfills the role opposite
the subject. Compared to this human actor,10 a computa-
tional agent can act more consistently, since its behavior is
fully parametrized. Further, the conditions under which hu-
mans act may confound their performance. In our feedback-
frequency experiment, for example, a human pupil’s learn-
ing would likely be confounded by varying levels of men-
tal effort to align actions to the constraints of each condi-
tion. The computational agent chooses its actions without
meaningfully pulling resources from the learning algorithm
(i.e., though they share computation time, there was plenty
of time for both). Additionally, the computational agent can
record every aspect of its “mental” process and behavior,

10A human opposite the subject could have fully scripted behavior,
act naturally except in certain situations (like misbehaving at certain
times), or simply act naturally. Additionally, the subject may believe
either that this person is a fellow subject or that she is working for the
experimenters. We call this human that would potentially be replaced
by an agent a “human actor” for simplicity and to differentiate from
the subject.

allowing in-depth analysis later. Both experiments provide
an example of such analysis, freezing learning at different
points in time and testing performance. On the other hand,
human actors have some clear advantages. The focus of
studies on social interaction is generally human-human in-
teraction, and human subjects probably interact more natu-
rally with human actors than computational ones, though the
extent of this difference will depend on the character of the
computational agent. Thus, the relative generalizability of
results from experiments with human actors increases from
the authenticity of human-human interaction. Given the dif-
ferent strengths of human and computational agents, we ex-
pect both to play an important role in future behavioral stud-
ies, a view shared by some in the human-robot interaction
community [6, 9, 22].

This paper provides analysis aiming to be valuable to a
researcher of learning agents or human-robot interaction.
However, these results may also be of interest to the edu-
cational community. There the relationship between class-
room misbehavior and teacher attention is of real-world im-
portance [39]. In a relatively recent article, Dobbs et. al [10],
summarizing past research on the relationship between mis-
behavior and attention from teachers, write that “children
who misbehave frequently receive more teacher attention
than do children who rarely misbehave”. One study found
that the amounts of criticism and commands received from
a teacher were negatively correlated with the level of on-task
behavior from children [12]. Other research on this relation-
ship has been correlational and often considers a potential
causal relationship in the direction of attention causing mis-
behavior. Using real children as misbehaving confederates
in a randomized controlled trial is an untenable proposition.
But with interactive agents, we were able to establish the
first causal connection between misbehavior and teacher at-
tention, showing that performance-oriented misbehavior can
increase attention.

5 Conclusion

This paper describes two experiments that consider how hu-
man beliefs and agent behavior affect a human’s teaching.
The first, the critique experiment, showed similar feedback
frequency and agent performance between subjects placed
in a teaching role and subjects in a critiquing role, indicat-
ing that either the role had little effect on the subject or it did
affect the subjects’ feedback quality but the resultant differ-
ences did not affect the TAMER agent’s performance. The
second, the feedback-frequency experiment, demonstrated
a technique that agents can use to increase the frequency
of trainer feedback: acting non-greedily. Additionally, when
we filter for agents that show sustained decent or better per-
formance, the frequency increase is greatest when this non-
greedy misbehavior occurs in response to decreases in the
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trainer’s feedback rate. Through this type of behavior, the
feedback-frequency experiment also gives a specific exam-
ple of how actions in the presence of a human trainer can
be used for purposes other than exploration or exploitation.
This result shows that the explore/exploit dichotomy is in-
adequate for describing actions by an agent learning inter-
actively from a human. Together, these experiments (1) lend
support to the efficacy of the TAMER approach—actively
taught and thus far greedy—to learning from human reward
and punishment, and (2) identify forms of human-agent in-
teractivity that do or do not impact agent performance.

This research may serve as a model for other research
that studies humans by having them interact with robots. The
generality of our findings would be buttressed by repeating
these two experiments in different contexts: especially using
a robotic agent, different tasks, and even a different teaching
modality, such as Learning from Demonstration. Nonethe-
less, the results presented here provide interesting, some-
times surprising results that apply to designers of learning
agents, including social robots. And the unexpectedness of
some of our conclusions indicates that further studies of hu-
man teaching stand to provide much counterintuitive guid-
ance in the design of agents that learn from human teachers.

An agent with the power to manipulate the trainer to its
advantage should not necessarily use that power. We should
consider when pulling a teacher in for more training is worth
the cost in human effort. There are numerous potential ap-
proaches to this problem. For example, a more sophisticated
agent might have some self-confidence measure and only
engage the human when it lacks confidence in making deci-
sions [7].

Lastly, this paper’s two experiments serve as exemplars
of using agents as parametrized social entities in experi-
ments on human behavior. We hope that they will inspire
and guide researchers to explore this nascent experimental
technique, helping to expand the impact of human-agent and
human-robot interaction into the behavioral sciences.
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