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Anisotropy profiling

I  such as neighbourhood tractography were to enable the robust segmentation
of tracts representing equivalent fasciculi from a group of brain volumes, the question then

arises, “What links or differentiates these tracts?” From a clinical perspective, we might be
interested in looking for general differences in tract integrity between a healthy population
and one affected by pathology. The work described in this chapter, which was completed
under the supervision of Prof. David Laidlaw, attempts to look at integrity—as indicated by
fractional anisotropy—on a fine-grained level, profiled along the length of a tract. The aim is
to facilitate the testing of hypotheses about integrity at the within-tract level, and to investigate
the behaviour and variability of anisotropy along a tract. This problem is separate to the one
that neighbourhood tractography tries to solve, and is treated as such. We find evidence to
suggest that although within-subject and within-group variance is large when  is examined
point-by-point, there can be sufficient regional differences between groups to ensure that subtle
effects may well be masked by considering only mean  values.

9.1 A single profile

To the extent that tractography is used at present for comparative clinical study, the most
common approach is to average within the region segmented by the algorithm (e.g. Kanaan
et al., 2006), which may be represented by a line or a field. Region-averaged —however the
region of interest is established—is a simple and useful way to study the effect of pathology on
white matter integrity whilst controlling noise issues. On the other hand, ever greater numbers
of studies are finding reduced  effects in all kinds of pathologies, making such observations
increasingly nonspecific; and since d is the only available technique for studying structural
white matter connectivity in vivo, independent corroboration or refutation of these results is
extremely difficult. A partial list of scenarios in which reductions in  have been observed
could include schizophrenia (Ardekani et al., 2003), multiple sclerosis (Ciccarelli et al., 2003b),
ischaemic leukoaraiosis in lacunar stroke (Jones et al., 1999), epileptic patients after corpus
callosotomy (Concha et al., 2006), ischaemic stroke (Muñoz Maniega et al., 2004) and normal
ageing (O’Sullivan et al., 2001).

For this study, six normal volunteers and five patients with vascular cognitive impairment
(; a type of cognitive deficit which affects white matter and is quite common in elderly
people) underwent a  protocol on a Siemens 1.5 T clinical scanner, with 12 noncollinear
diffusion weighting gradient directions at a b-value of 1000 s mm−2. The tractography infras-
tructure used for this work, BrainApp, uses a diffusion tensor-based deterministic streamlining
algorithm, and visualises the results in terms of streamtubes and streamsurfaces (Zhang et al.,
2003). It uses whole brain seeding—which is possible in a reasonable time using a deterministic
tractography algorithm—and thus avoids the selection constraint implicit to a neighbourhood
or  seeding strategy. Simple streamline-based tractography lends itself very naturally to
linear anisotropy profiling.

A streamtube is simply a piecewise linear streamline represented by a series of cylinders,



104 Chapter 9. Anisotropy profiling

Figure 9.1: Example of a splenium streamtube set, segmented
by placing a large region of interest near each end of the struc-
ture and retaining tubes passing through both. The shade of
each streamtube indicates the local FA value. The blue structure
represents the ventricles.

whose local radii may be constant or may be used to represent some characteristic of interest.
A similar visualisation method has been used in other studies, such as Jones et al. (2005b).
Working with tracts represented by single lines—rather than fields—is helpful for this work
because it removes the need to linearise each tract before an anisotropy profile can be created.
Ignoring its width, a streamtube, ti, is therefore made up of piecewise linear line segments
connecting a sequence of points, (pi,a), with a ∈ {1..Ni}, in the native acquisition space of the
subject. The distance between successive points, di, is fixed in this space. Each of these tubes
has a seed point, but unlike in the probability field output generated by  ProbTrack, the
location of the seed point is not significant for the interpretation of the results, so we will not
give it special treatment.

We first need to establish which tubes are of interest. Since BrainApp seeds throughout the
brain, some kind of restriction is needed in order to focus on a specific white matter structure.
Whatever method is chosen should be reproducible, however, so that it can be carried forward
to comparative profiling between subjects. We used a two region of interest constraint to select
the splenium of the corpus callosum, our tract of interest, with one  placed near the left end
of the splenium tract and the other placed near the right end. These s are symmetric, as per
Conturo et al. (1999)—that is, they are treated identically, so swapping them would have no
effect on the segmentation. This is not generally the case when one  provides the set of seed
points, as in Abe et al. (2004) and some other studies. When working with streamtubes, this
strategy amounts to taking the intersection of the set of tubes passing through  one, with
the set of tubes passing through  two. An example of the result is shown in Fig. 9.1.

Since we have been critical of multiple  methods in earlier chapters, we will take a
moment to justify this strategy. The important factors here are that the tractography algorithm
being used to generate the streamtubes is deterministic, and that the seed points that generate
the relevant streamtubes cannot be expected to form a compact neighbourhood, due to the
whole brain seeding policy. Our objection about the effect of  constraints on interpretability
due to the addition of extra conditional dependencies (cf. §6.5) only applies to output with a
probabilistic significance. Constraining the algorithm by the selection of seed points is less
relevant here; and neighbourhood tractography, which works on that principle, is not directly
applicable. Ultimately, since the splenium is a coherent bundle with a distinctive shape, and
is reasonably distinct from the rest of the corpus callosum and other nearby tracts in terms of
the regions it connects together, the two method is quite specific and reproducible enough.
Moreover, it simply selects a set of streamtubes, just as choosing a number of seed points or
clustering the streamtubes would. The effects are equivalent in essence.

Having “selected” the structure of interest, we can then plot the  value, fi,a, at each point
on a tube, pi,a, thus forming an profile along the tube. (These values are interpolated from the
 data available at each voxel location.) Since all of these tubes are defined in the same space,
aligning them is quite straightforward: we simply choose a plane which each streamtube must
cross and consider the crossing points in each tube to be equivalent. We then examine the
variability across the set of tubes at each point. This process produces a streamtube-averaged
profile like the one shown in Fig. 9.2. In this case the distance between successive points, di,
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py Figure 9.2: Pointwise mean FA along
the set of splenium tubes segmented
using the two ROI method in a single
subject. The error bars indicate the
mean plus or minus one standard de-
viation. The dashed line indicates the
mean FA of the profile.

is 1 mm for all tubes. It should be noted that the alignment will handle differences in length
well, but large shape differences, including kinks in some tubes, will render it inappropriate
in some regions; and this is increasingly likely to occur as one moves away from the landmark
plane.

Fig. 9.2 highlights two things in particular. Firstly, it is clear that the standard deviations
are large to very large, relative to the means. Note, however, that on the left side of the graph
in particular, the standard deviations are very large in a region near the middle of the tract,
where the alignment plane was placed, and then shrink again further from the middle. This
suggests that the variability is not primarily due to misalignment. One likely alternative cause
is variation in the extent of partial volume effects. Some tubes will be nearer to the edge of the
bundle than others, and the anisotropy at these locations is therefore more likely to be affected
by proximity to grey matter or .

9.2 The median tube

Comparative profiling introduces some further issues. The questions of tube selection and
alignment need to be reexamined, and differences in brain size must be compensated for in
some way. We cannot simply use every tube selected in each brain, since the number of tubes
selected is not fixed so bias would occur. We can’t align tubes naïvely to a plane because each
brain is represented in its own independent native space. And brain size cannot be neglected
because it will affect the curvature of the structure and so the point homology.

Our approach to the first problem is to work only with the median tube from each brain;
that is, the tube that minimises the average distance to all other tubes in the set. So, for a
single subject whose splenium tube set contains N tubes, the median tube, tm, is identified by
calculating

m = argmin
j


1

N−1

N∑

i=1;i! j

D(ti, tj)


, (9.1)

where D(ti, tj) is the distance between streamtube i and streamtube j, given by the average
distance from the points on the longer tube to the shorter tube, viz.

D(ti, tj) =



1
Ni

∑Ni
a=1 d(pi,a, tj) if Ni ≥Nj

1
Nj

∑Nj
b=1 d(p j,b, ti) otherwise.

The point-to-tube distance, d(pi,a, tj), is given by the minimum distance between the point
and a line segment delimited by successive points in tube tj. The point-to-segment distance, in
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Figure 9.3: The calculation of the distance, d̂, between a
point and line segment depends on whether the projection
of the point onto the segment direction crosses the segment
itself. In (a), the projection crosses the segment (0 < u < 1),
while in (b) and (c) it does not; and in these latter cases the
shortest distances to the segment (dashed lines) are to one
of its end points. The dotted extension of the line segment
is shown for illustration.

pj,b
(t = 0)

pj,b+1
(t = 1)

(b)
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turn, depends on the spatial arrangement of the point and segment (see Fig. 9.3). Mathemat-
ically, we parameterise the bth line segment as s j,b(t) = p j,b + t l j,b, where l j,b = p j,b+1 −p j,b and
t ∈ [0,1]. The projection of the point pi,a onto the line segment—which forms the closest point
between the two—is then given by p j,b+u l j,b, where

u =
l j,b · (pi,a−p j,b)

l j,b · l j,b
. (9.2)

The point and the line segment must, of course, be in the same space as one another. Now,
u ∈R, and the distance between the point and the segment is calculated differently depending
on whether the projection actually falls within the segment—i.e. u ∈ (0,1)—or not. Specifically,

d̂(pi,a,s j,b) =



‖pi,a−p j,b‖ if u ≤ 0
‖pi,a− (p j,b+u l j,b)‖ if 0 < u < 1
‖pi,a−p j,b+1‖ if u ≥ 1.

(9.3)

We then have
d(pi,a, tj) =min

b
{d̂(pi,a,s j,b)} . (9.4)

This is a standard formulation of the distance between a point and a line segment, but unfor-
tunately it is a case in which the maths makes a simple concept look complicated. Eq. (9.2) is
mathematical infrastructure for Eq. (9.3), which embodies the fact that if the line orthogonal to
the line segment and passing through the point pi,a does not cross the line segment, then the
nearest point on the segment is in fact one of the end points. Fig. 9.3 illustrates this, for all three
cases in Eq. (9.3). Note that if the next line segment, from p j,b+1 to p j,b+2, were to be collinear
with the one illustrated, then the distance from point (c) to that segment would be lower than
the distance shown, affecting the value of Eq. (9.4) appropriately.

Thus—finally—Eq. (9.1) is fully defined, and we can find the median tube in this way for
each subject. This arrangement has the advantage that the median will tend to be towards
the physical centre of a bundle of tubes, and therefore any partial volume effects should be
relatively small. Incidentally, this justification differs slightly from that given for using the
median streamline for tract matching in chapter 8, where the median was used simply because
it epitomises the shape of a set of streamlines.

9.3 Intersubject tube alignment

As we have already mentioned, the tube sets representing the splenium of each subject’s corpus
callosum are necessarily each defined in their own space; and so absolute point locations are
not directly comparable between subjects. In order to work around this complication, we
observe that the splenium, being an interhemispheric fasciculus, always crosses the brain’s
midsagittal divide. (In fact, the placement of the s guarantees this, since one is in the left
hemisphere and one in the right.) This divide can be acceptably approximated by a plane.
A number of methods have been proposed for automatically extracting this plane (e.g. Hu &
Nowinski, 2003; Volkau et al., 2006), but for this work we established its location in each subject
manually, by placing four points, r1 to r4, on the midsagittal divide by eye—thus marking the
corners of a trapezium. Since three points are sufficient to establish a plane, the distance of the
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fourth point to the plane was used as a simple error measurement to gauge the consistency of
the placement. This distance is given by

δ = n · (r4− r1) ,

where
n =

(r2− r1)∧ (r3− r1)
‖(r2− r1)∧ (r3− r1)‖ ,

the unit vector normal to the plane on which the points r1 to r3 lie. The mean placement error
across all subjects, 〈δ〉, was 0.90 mm.

Having established this midplane, we can find the location where each subject’s median
tube crosses the plane by first working out in which line segment the crossing occurs, and
then finding the exact intersection of that segment with the plane. If the relevant line segment
passes through the points r5 and r6, it can be expressed as

s(t) = r5+ t(r6− r5) ,

and a bit more geometry yields the value of t where the line segment crosses the plane to be
given by the ratio of determinants

t = −

det




1 1 1 1
x1 x2 x3 x5
y1 y2 y3 y5
z1 z2 z3 z5




det




1 1 1 0
x1 x2 x3 x6−x5
y1 y2 y3 y6− y5
z1 z2 z3 z6− z5




,

where r1 = (x1, y1,z1) and so on. We then translate the co-ordinate system of each native space
so that this intersection point is at the origin. Finally, on the assumption that the point where
the median tube crosses the midsagittal divide is equivalent across brains, we treat all of these
translated spaces as being equivalent. It is now possible to combine the median tubes from all
subjects into an intersubject tube set, and find an intersubject median tube from this set.

Correcting for translational differences between subjects is not sufficient, however, since the
shapes of the different subjects’ spleniums will still vary due to differences in brain size. One
approach to this problem is to use the intersubject median-of-medians tube, tM, as a spatial
reference, and take an  value, f ′, for each tube at each point on this median by finding the
nearest neighbour point on each separate tube. That is,

f ′i,a = fi,b̃ ,

where
b̃ = argmin

b
‖pM,a−pi,b‖ ;

so the ath  value from tube i is the value at that point on ti that is closest to the ath point
on tM, with i now indexing over subjects. This gives us a one-dimensional  profile of fixed
length for all subjects.

9.4 Comparative profiling

Fig. 9.4 shows the result of performing the whole process described above on a full data set.
We located the splenium, using the two  method, in each subject. We then calculated a
single intersubject median tube by combining all subjects’ individual medians together; but
subsequently separated them into patient and control groups once more for generating the
averaged profiles shown in the figure. The intersubject median’s  data was not included,
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Figure 9.4: An example of comparative profiling between groups of subjects. The red line with green error
bars shows the average (plus or minus one standard deviation) value of f ′, averaged across all subjects
with VCI, at each point on the intersubject median tube. The black line shows the mean across the normal
subjects. Appropriately coloured horizontal dashed lines show the profile mean FA. The blue line with blue
error bars indicates the mean (plus or minus one standard deviation) distance from the intersubject median
tube to its nearest neighbour at each point, across all subjects. The vertical dotted line shows the location
of the midplane.
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reducing the number of  subjects contributing to four. These initial results were first
presented in Clayden et al. (2007b).

In Fig. 9.4, red stars indicate significant (P < 0.05) differences between the groups using a
two tailed t-test on f ′ data at each point. Since no correction for multiple comparisons was
performed, these differences are tentative results at best, but they are somewhat informative
nevertheless. Since the significant points are clustered into two (almost) contiguous regions, it
seems unlikely that the differences are due to random noise effects; although the combination
of interpolation and the nearest neighbour process makes successive points somewhat interde-
pendent. It is interesting to note that while the grand mean , indicated by dashed horizontal
lines, is lower for the  group than for the normal group—although this difference was not
significant—the two regions differing between the profiles are not consistent in the sign of the
difference between the groups. The region at the right hand end of Fig. 9.4 shows lower  in
the  group, which is the most common finding in pathological groups, while the region on
the left side of the graph shows higher  in . This may be because the region represents
an area of crossing fibres. If one of the two fibre populations were to preferentially suffer a
loss of integrity, an increase in  would be expected. To the left of the significant region, 
is decreased relative to the normal population again, although the error bars are too large for
this to be significant.

The large nearest neighbour distances in this latter region may be responsible for the large
variability which is particularly noticeable at the left hand end of the profiles. The blue curve
indicates the mean and standard deviation of the distances from the intersubject median tube
to each subject’s individual median. This is zero by definition at the midplane—indicated with
a vertical dotted line—and tends to increase as one gets further from there. The greater this
distance becomes, the greater the divergence of the median tubes from one another; but it is
not clear whether, or to what extent, an increase in divergence makes the profiled  values
intrinsically less comparable.

9.5 Discussion

The approach to anisotropy profiling described above has allowed us to explore some of the
issues involved with this kind of comparative analysis, and to get a sense of the variability
in anisotropy along a major tract. There are, however, evident reasons that this technique
would not be very widely useful in its current state. Firstly, not all tracts in the brain cross the
midsagittal divide, so using this landmark for intersubject alignment will not be possible in all
cases. Secondly, the use of nearest neighbours for establishing a point homology between tubes
is not robust, and the performance of the technique will depend on the shape of the tract of
interest. One possible way of avoiding both of these issues is to use registration for alignment
of median tubes between subjects. This would solve the problem of handling differences in
brain size at the same time as annulling translational misalignment. It would be less tract-
specific than the combination of techniques described in §9.3, and so if it worked well enough
it would be applicable, in theory, to any tract of interest in the brain. Another possible avenue
would be to use the probabilistic neighbourhood tractography methods described in chapter
8 to select a representative line for each subject, rather than taking the median. This would
circumvent the limitations of the two method in more complex tracts than the splenium.

In addition to dealing with these systematic limitations, we would need to apply the
profiling process to more data to get a clearer picture of its effectiveness, or to draw any serious
clinical conclusions. In particular, it would be interesting to study differences in the profiles
between scans of a single subject, and between two normal populations. We would also need
to look at other tracts. It may be that the full  profile is actually too noisy a representation to
be generally useful; but it is nevertheless suggested by the results so far that the mean  along
a streamtube, or group of tubes, is only a perfunctory summary of the available information.
Fig. 9.2 shows that even allowing for large error bounds the  along a tract in a single subject
is not well encapsulated by the mean, and Fig. 9.4 demonstrates potential regions of difference
between healthy and possibly abnormal profiles despite there being no significant difference
in the means. We have also done some work in which the profiles were filtered for high
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frequency noise by convolving them with a Gaussian smoothing kernel—which has not been
shown here—but it remains unclear whether or not this would be beneficial. It may be that one
could use this kind of smoothing to make multiple comparisons correction less of a problem,
as  does, but the choice of variance for the smoothing kernel might be hard to justify. All
of this is left as future work.

The ability to meaningfully compare anisotropy—or diffusivity, or any other measure of
interest—between groups at a fine-grained but tract-specific level could be very useful for
comparative analysis in white matter, but for the moment there are, as we have discussed, a
number of hurdles in the way of the profiling approach we have described here.


