
4

Diffusion magnetic resonance
imaging

T  resonance application that the rest of this thesis will be concerned with is that
of diffusion magnetic resonance imaging (d). This chapter provides a brief description

of diffusion and how it can be examined in the brain with d. Mathematical models for
diffusion in the brain are also presented, along with their theoretical and practical benefits and
limitations. Finally, we look at some of the clinical uses of d.

4.1 The Einstein picture

Diffusion is a spontaneous phenomenon in any fluid whose temperature is greater than absolute
zero (0 Kelvin). The molecules making up the fluid possess kinetic energy and are therefore
constantly moving—the greater the energy, the faster the movement. The direction of this
movement is random, and will typically change regularly as molecules collide with one another.
Diffusion is often thought of as the process by which concentration gradients are flattened out,
and we will initially describe it in these terms; but the principle is equally applicable to the
movement of molecules within a fluid composed of a single type of molecule—in the latter
case, the process is known as self-diffusion. Diffusion is well described by classical mechanics,
so we will not need to make another foray into the quantum domain.

Consider first a one-dimensional example. We denote the concentration of some molecule
at location x and time t with C(x, t). The flux, or rate of movement of the molecules normal to
the concentration gradient, is then given by

F = −D
∂C
∂x
, (4.1)

where D is a constant known as the diffusivity of the fluid. As a result of this flux, however,
the local concentration gradient will decrease, and so a time-dependent aspect needs to be
introduced to describe the picture more fully. The equation

∂C
∂t
=D
∂2C
∂x2 (4.2)

was first arrived at by Adolf Fick, and so Eqs (4.1) and (4.2) are called Fick’s Laws of diffusion
(Fick, 1855; reprinted in translation in Fick, 1995).

If we assume that there are n molecules in total, all of which are at the location x = 0 at time
t = 0—so that C(x,0) is a Dirac δ-function—then diffusion will proceed such that

C(x, t) =
n√

4πDt
exp
(
− x2

4Dt

)
, (4.3)
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as described by Einstein (1905). If we divide Eq. (4.3) by n, we obtain a properly normalised
p.d.f. that describes the distribution of the molecules in the x dimension—or rather, since the
distribution is dependent on t, a continuous-time stochastic process. In particular, we can see
by inspection that the distribution P(x | t) is a Gaussian distribution with µ = 0 and σ2 = 2Dt.

If the diffusion process is isotropic, or homogeneous across all orientations, then the gener-
alisation to three dimensions is straightforward. Diffusion collinear with each of the vectors i, j
and k—the orthonormal unit vectors in the x, y and z directions respectively—is independent,
and so the joint distribution is given by

P(r |r0, t) =
1

(4πDt)3/2 exp
(
− (r− r0)2

4Dt

)
, (4.4)

where r = xi+ yj+ zk, and r0 is the initial location of the molecules, which is not assumed to
be zero in this general case. The mean of the distribution is now a vector, µ = r0 = (x0, y0,z0),
while the variance is just as it was before: σ2 = 2Dt.

The dependence of the description above on a concentration gradient does not present
a problem for the case of self-diffusion. The fluid molecules may all be of a single species
under these circumstances, but we can mentally label a molecule with initial position r0 as
being (uniquely) of interest; and thereafter treat it as distinct from the rest of the fluid. The
mean-squared distance that this molecule will travel during a diffusion time t is given by

〈
|r− r0|2

〉
=
〈
(x−x0)2+ (y− y0)2+ (z− z0)2

〉

=
〈
(x−x0)2

〉
+
〈
(y− y0)2

〉
+
〈
(z− z0)2

〉
,

which is equivalent to the sum of the variances along each dimension, since µx = x0 and so on.
We therefore easily arrive at

〈
|r− r0|2

〉
= σ2

x +σ
2
y +σ

2
z = 6Dt . (4.5)

Note that this equation for the mean-squared diffusion distance has no dependence on r0
since the fluid is assumed to be homogeneous, so that diffusion from all starting locations is
statistically identical. Wherever a particular molecule starts, its diffusion distance from that
point will be the same on average.

In general, diffusion is not isotropic. In a bowl of water it will be very close to isotropic,
but in brain tissues—which contain large amounts of water but also various impermeable or
semipermeable structures—diffusivity will vary from one direction to another. The Gaussian
displacement distribution at time t therefore has in general the covariance matrix

Σ = 2Dt =




2Dxxt 2Dxyt 2Dxzt
2Dxyt 2Dyyt 2Dyzt
2Dxzt 2Dyzt 2Dzzt


 , (4.6)

which is symmetric, like any covariance matrix. The diffusivity values making up the matrix
D are the components of a three-dimensional diffusion tensor, relative to the particular or-
thonormal basis set, {i, j,k}.a The special case of isotropic diffusion is then equivalent to the
conditions

Dxx =Dyy =Dzz =D Dxy =Dxz =Dyz = 0 .

In the brain, the main diffusing molecular species is water; and since a molecule of
water contains two hydrogen nuclei it is visible to . Anisotropic—that is, directionally
inhomogeneous—diffusion is associated primarily with white matter, due to the highly lin-
earised structure of this type of tissue (see Fig. 4.1), which is such that the local self-diffusion of
water molecules is restricted to a far greater degree across a white matter tract than it is along
it. Grey matter, by contrast, lacks any coherent linear structure, and so diffusion around that
kind of tissue is much closer to isotropic.

aA tensor is an abstract mathematical construction which is independent of the coordinate frame being used.
However, relative to any given set of basis vectors, it can simply be represented as a matrix of numbers. Further details
would be superfluous here, but can be found in Riley et al. (2002).
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DTI essentially provides two types of information about
the property of water diffusion; the extent of diffusion
anisotropy and its orientation. By assuming that the
largest principal axis of the diffusion tensor aligns with
the predominant fiber orientation in an MRI voxel, we
can obtain 2D or 3D vector fields that represent the fiber
orientation at each voxel. The 3D reconstruction of tract
trajectories, or tractography, is a natural extension of
such vector fields. Before further describing tractogra-
phy, it is important to discuss what exactly DTI measures
and how the data relate to the tract trajectories we are
trying to derive from the measurement.

In typical DTI measurements, the voxel dimensions are
on the order of 1–5 mm and DTI measures the averaged

diffusion properties of water molecules inside it. This
voxel size is usually small enough to distinguish white
and gray matter [Fig. 1(A)]. The white matter consists of
tracts that are running along various directions and are
large enough to discern visually [Fig. 1(B) and (C)]. Very
often, image resolution is sufficiently high for the white
matter tracts to contain several voxels. The white matter
tracts, in turn, consist of densely packed axons (neuronal
projections) in addition to various types of neuroglia and
other small populations of cells [Fig. 1(D)]. Inside the
voxel, water molecules are distributed between these cell
types and the extracellular space (80–85% are intracel-
lular). Thus, even a voxel within a single white matter
tract consists of very inhomogeneous environment, and
water molecules are likely to experience high anisotropy
as judged from the cytoarchitecture of the axon [Fig. 1(D)
and (E)]. Inside an axon, water molecules are surrounded
by high concentration of neuronal filaments, which are
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Figure 4.1: The linear microstructure of neural white matter. The axons and glia which make up connective
tissue at the micron scale, and the neuronal filaments which are present at the nanometre scale, are mainly
collinear, producing a consist bias in the local self-diffusion of water. Adapted from Mori & van Zijl (2002).

4.2 Diffusion tensor imaging

Diffusion sensitisation can be added to the standard spin-echo pulse sequence described in
§3.4 by adding a symmetric pair of diffusion weighting gradients either side of the refocussing
(180◦) pulse, as shown in Fig. 4.2. The first of these gradients will offset the phase of the spins
by an amount that depends on their location, and the second will provide equal and opposite
rephasing if the spins have not moved. Since in practice the spins do move, and randomly,
an isochromat will become dephased as the component spins spread out. The further the
water molecules have diffused during the time, ∆, between applications of the gradient, the
less perfect this rephasing will be, resulting in a smaller magnitude of final signal. Greater
diffusivity is therefore indicated by a more greatly attenuated signal. It should be noted that
this effect differs from coherent motion or flow, which will produce a phase shift in the spin
isochromats, but will not attenuate the signal as random motion does.

It was shown by Stejskal & Tanner (1965), who first proposed the sequence, that for a
diffusion weighting gradient of maximal magnitude G, applied for a time δ, the log-ratio
between the signal, A, after the full echo time, , and that produced by the initial 90◦  pulse
is given by

ln
(

A(b)
A0

)
= −γ2δ2

(
∆− δ

3

)
G2Deff = −bDeff , (4.7)

where b, which incorporates the relevant characteristics of the diffusion gradients, is known as
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TE Figure 4.2: Pulse sequence timing diagram for a
diffusion-weighted spin-echo experiment. Two
diffusion sensitisation gradients are applied ei-
ther side of the 180◦ pulse. They are switched
on for a time δ in each case, and separated by a
time ∆.



40 Chapter 4. Diffusion magnetic resonance imaging

Figure 4.3: Diffusion-weighted MR images acquired with diffusion sensitisation along three orthogonal axes.
The level of signal attenuation in some areas (such as those indicated with arrows) is evidently dependent
on this direction. Images courtesy of Dr Susana Muñoz Maniega.

the diffusion weighting factor—a notation introduced by Le Bihan et al. (1986).
It is generally the case that diffusivity appears to vary with time rather than being constant,

so Eq. (4.7) describes an effective diffusivity, Deff, averaged over the diffusion time of the
experiment. In tissue with an anisotropic diffusion profile, this “constant” will also vary with
the orientation of the diffusion gradient applied to the sample (Moseley et al., 1991; see also
Fig. 4.3); and so we need to measure the whole diffusion tensor if we wish to characterise this
situation more accurately. The extension of the principles described above to diffusion tensor
imaging () was described by Basser et al. (1994a). In this case, Eq. (4.7) generalises to

ln
(

A(b)
A0

)
= −γ2δ2

(
∆− δ

3

)
G2RTDeffR = −

∑

i

∑

j

bi jDeff
i j , (4.8)

where R is a normalised column vector describing the direction of the applied gradient, and bij
are the elements of a symmetric matrix, b, which is analogous to the scalar weighting factor in
Eq. (4.7). The elements of this weighting matrix encode various interactions between diffusion
and imaging gradients, which can be quite complex and which vary from one type of sequence
to another (the  case is described in Mattiello et al., 1997). The equivalent scalar diffusion
weighting factor to b is given by the trace of the matrix.

Since knowledge of the pulse sequence design is sufficient to establish the b matrix for any
given acquisition, Eq. (4.8) represents a system of linear equations that can be solved for the six
independent components of the tensor given values of A for six noncollinear diffusion gradient
directions, plus the T2-weighted signal, A0.b However, in practice it is usual to apply more
than six different gradient directions, since  signal measurements are noisy, and then to fit
the tensor statistically using multivariate linear regression.

There has been some debate in the literature over the particularities of optimising the choice
of gradient scheme for various purposes (Hasan et al., 2001; Papadakis et al., 1999; Skare et al.,
2000), particularly the calculation of tensor-derived scalar metrics, which are described below.
Broadly speaking, it is as well to acquire data for as many gradient directions as possible
(Jones, 2004); and these are commonly arranged to coincide with the vertices of an icosahedron
(Batchelor et al., 2003), or to minimise the electrostatic repulsion force when the gradients are
treated as point chargesc (Conturo et al., 1996; Jones, 2004).

Once the effective diffusion tensor has been estimated, it can be used to characterise local
diffusion at each voxel in the brain in various ways. Since the matrix representing the tensor
is symmetric in any coordinate frame, its eigenvectors are orthogonal and its eigenvalues real.
We can therefore construct a local coordinate system from the eigenvectors, {ε1,ε2,ε3}, which
are arranged by convention such that the largest eigenvalue is λ1—corresponding to ε1—and
the smallest is λ3 (Basser et al., 1994b).

The general shape of the diffusion tensor is commonly visualised using ellipsoids whose
radii along each eigenvector direction are given by the square root of the corresponding

bRecall from chapter 3 that the basic spin-echo sequence is T2-weighted, and this is the only factor in a sequence
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(a) (b) (c)

Figure 4.4: Ellipsoids representing isotropic (a), oblate (b) and prolate (c) diffusion profiles.

eigenvalue (see Fig. 4.4). Thus, the case of isotropic diffusion (λ1 = λ2 = λ3) is represented
by a sphere, while oblate diffusion (λ1 = λ2 > λ3) appears disc-shaped, and prolate diffusion
(λ1 > λ2 = λ3) appears cigar-shaped.

The average magnitude of the diffusion along the three eigenvectors can be calculated in a
rotation-invariant way by taking the trace of the tensor matrix; or equivalently, the sum of the
eigenvalues. This quantity is known as the mean diffusivity ():

 = 〈D〉 = Tr(D)
3
=
λ1+λ2+λ3

3
. (4.9)

This quantity gives no indication of the anisotropy of the tensor, since it takes into account only
the mean of the eigenvalues. There is, moreover, no single obvious way to index anisotropy.
Three scalar valued measures that have been proposed are fractional anisotropy (), relative
anisotropy () and the volume ratio (), which are defined as follows (cf. Basser & Pierpaoli,
1996; Pierpaoli & Basser, 1996).

 =

√
3
2

√
(λ1−〈D〉)2+ (λ2−〈D〉)2+ (λ3−〈D〉)2

λ2
1 +λ

2
2 +λ

2
3

(4.10)

 =
1√
3

√
(λ1−〈D〉)2+ (λ2−〈D〉)2+ (λ3−〈D〉)2

〈D〉 (4.11)

 =
λ1λ2λ3

〈D〉3 (4.12)

A  of unity represents isotropic diffusion, whereas  and  are zero when all three eigenval-
ues are equal. At the other end of the scale,  and  are maximal when λ2 = λ3 = 0, whereas
 is zero when any of the eigenvalues is zero. Of the three,  gives the highest signal to noise
ratio (Papadakis et al., 1999), and is by far the most commonly used in the literature.

4.3 A more general displacement distribution

The tensor model makes the assumption that diffusion at the scale of a voxel is essentially
Gaussian, which allows us to use the generalised Einstein equation—with covariance matrix
given by Eq. (4.6)—as an appropriate model of the underlying process. However this assump-
tion, as we will see later, is not always appropriate; and it is particularly prone to fail in regions
where white matter tracts cross one another. Alternative models of diffusion which have been

with diffusion gradients of zero magnitude.
cThe inspiration here is the behaviour of electrons in atomic orbitals, which are equally charged and therefore repel

one another. They spontaneously space themselves out as a result.
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developed with the particular application of fibre tracking in mind will be discussed in chapter
5, but we will describe here an alternative which predates such applications substantially.

The origins of q-space can be traced back to the work of Edward Stejskal, who described
how a special case of the Stejskal–Tanner pulse sequence (Fig. 4.2) could be used to infer an
arbitrary local displacement distribution. If the time during which the diffusion gradient is
applied, δ, is made to be very short—in particular so that δ& ∆—then the signal attenuation
ratio of the experiment is given in general by

A(G,∆)
A0

=

∫
P(r0)

∫
P(r |r0,∆)exp(−iγδ(r− r0) ·G)drdr0 , (4.13)

where the vector G embodies the direction and magnitude of the diffusion gradient (Stejskal,
1965). Under the assumption of local homogeneity P(r0), which represents the initial distribu-
tion of diffusing molecules within the volume of interest, is uniform; and so the outer integral
can be ignored. Stejskal also showed that if the Gaussian displacement distribution given by
Eq. (4.4) were used for P(r |r0,∆), then Eq. (4.13) becomes equivalent to Eq. (4.8), albeit with
∆−δ/3 replaced by ∆ due to the narrow gradient pulse assumption.

Callaghan et al. (1988) later proposed that the direction, magnitude and duration properties
of the diffusion gradient be parameterised as

q =
1

2π
γδG ,

by direct analogy with the k vector that is so central to magnetic resonance imaging theory (cf.
§3.4). Using this notation, and taking r0 = 0, which gives no loss of generality if we assume
local homogeneity, the attenuation ratio becomes

A(q,∆)
A0

=

∫
P(r |∆)exp(−i2πq · r)dr , (4.14)

which represents a Fourier transform of the displacement distribution. By the Fourier inversion
theorem (Riley et al., 2002), we can therefore recover the distribution by means of the inverse
transform

P(r |∆) =
1

A0

∫
A(q,∆)exp(i2πq · r)dq . (4.15)

By sampling signal values from a series of locations in q-space—typically achieved by in-
crementally stepping up the gradient strength and changing its direction—one can therefore
capture the diffusive behaviour of water molecules in the brain at different length scales and
over various diffusion times.

The appeal in acquiring a model-free estimate of the diffusion displacement distribution
is clear—modelling assumptions are avoided, and so one need not worry about their validity.
However, the narrow gradient pulse assumption made by q-space theory is itself problematic.
Whilst δmust be small enough so that the pulse can be approximated by a Dirac delta function,
the time integral of the pulse given by δG must be finite, otherwise q will be zero and there
will be no signal attenuation at all. As a result, the magnitude of the gradient pulse needs to be
very large. Such gradient strengths are attainable using modern hardware—although they are
out of the reach of most clinical  scanners—but they are very demanding to generate and
may have adverse effects on the subject. Hence, studies that have closely approximated the
narrow pulse assumption (e.g. Biton et al., 2006, who used the parameters δ = 2 ms, ∆ = 50 ms,
Gmax = 500 mT m−1) have worked with excised (ex vivo) rather than living (in vivo) tissue.

4.4 The role of registration

Since all but the simplest of d experiments require multiple image acquisitions with different
gradient directions, the basic data from which information will be derived is a series of brain
volumes. Although motion within volumes will be minimised by using an -based pulse
sequence, one cannot rule out the possibility that the subject will move during the whole
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(a) (c)(b)

Figure 4.5: Registration of a T2-weighted EPI image (a) to a T1-weighted standard brain volume (b) produces
a version of the original in standard space (c). Note that the general orientation and scale of subfigure (c)
correspond to those of (b), but the details of the image do not match perfectly. The different contrast types
of subfigures (a) and (b) is not a problem if the cost function is chosen appropriately.

experiment, particularly if the number of gradient directions is large. Moreover, the varying
orientations of the diffusion gradients will result in differing eddy current induced distortion
effects from one volume to another. It is therefore unwise to assume that the subject’s brain is
positioned consistently in the field of view throughout a scanning session.

The process of realigning the three-dimensional images is registration. Image registration
is usually framed as an optimisation problem in which an algorithm attempts to find a global
transformation which minimises some cost function indicating the “distance” between two
images. A number of cost functions have been used for this purpose, typically based on the
correlation or mutual information between image intensity data; but a more divisive issue
is the scope of the transformations allowed by the algorithm. The number of degrees of
freedom varies from six for a rigid-body transformation—translation by a vector L= (Lx,Ly,Lz)
and rotation by angles φ, θ and ψ about the x, y and z axes—up to hundreds or thousands
for a complex nonlinear approach, which may involve local as well as global optimisation.
Nonlinear methods have the advantage of providing a better match between the original
image and the target image, but are slower due to having to optimise over a much larger
parameter space, and pose a risk of overfitting.

General purpose linear registration algorithms optimise over affine transformations (Friston
et al., 1995; Jenkinson & Smith, 2001; Woods et al., 1998), which incorporate the rigid-body
parameters as well as a scaling vector, S = (Sx,Sy,Sz), and three shear terms: Hxy, Hxz and Hyz.
The resulting affine transformation matrix is therefore composed of the product

T =




1 0 0 Lx
0 1 0 Ly
0 0 1 Lz
0 0 0 1







1 0 0 0
0 cosφ sinφ 0
0 −sinφ cosφ 0
0 0 0 1







cosθ 0 −sinθ 0
0 1 0 0

sinθ 0 cosθ 0
0 0 0 1




×




cosψ sinψ 0 0
−sinψ cosψ 0 0

0 0 1 0
0 0 0 1







1 Hxy Hxz 0
0 1 Hyz 0
0 0 1 0
0 0 0 1







Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1



.

This composite matrix may then be used to transform directly the grid of voxel locations,
making up the native space in which the original image is acquired, to their equivalent points
in the target space. The image data must then be interpolated onto this new grid. The
interpolation scheme for this final step may need to be chosen to suit the particular application,
but a trilinear scheme is often adequate.

Affine registration of diffusion-weighted images to a T2-weighted reference image from the
same scanning session is an effective way to correct for eddy current induced distortions in
the former, and it simultaneously transforms all of the individual scans into a common space
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(a) (b)
Figure 4.6: Images taken from a patient 11 hours
after stroke onset. The T2-weighted image (a)
is normal in the lesion region, but the averaged
diffusion-weighted image (b) shows significantly
reduced diffusion compared with the equivalent
region in the contralateral hemisphere. Images
courtesy of Dr Susana Muñoz Maniega.

so that the correspondence between voxels in each volume is improved. Registration is never
perfect, however, and it should be borne in mind that the data used to fit a diffusion tensor
(for example) at each voxel cannot truly be said to be taken from a single fixed location in the
brain. Some inaccuracy is inevitable.

For comparative studies involving multiple subjects, a popular strategy is to register each
subject’s reference image to an established standard image such as that described by Evans
et al. (1993), thus transforming them all into a common standard space (see Fig. 4.5). In this
case, since no two brains are merely stretched and sheared versions of one another, linear
registration is strictly inadequate. The approximation suffices, however, for some purposes.

4.5 Diffusion MRI in the clinic

Le Bihan et al. (1986) were the first to demonstrate the clinical potential of d. They showed
that the presence of astrocytomas (a type of tumour originating in astrocytes) or oedema
(swelling due to the accumulation of excess fluid) produced measurable differences in effective
diffusivity, when compared with normal tissue. They also demonstrated reduced diffusivity in
normal white matter compared to grey matter, which is now established as a standard finding.

Diffusion imaging has been widely used to study acute ischaemic stroke (damage to the
brain resulting from a blockage in its blood supply), and has been shown to provide useful
information beyond that which is available to structural T1- or T2-weighted  (Baird &
Warach, 1998). In particular, reduced diffusivity can be observed in ischaemic tissue very soon
after the stroke onset, while T2 relaxation times are largely unaffected until oedema develops,
which takes place much later (Knight et al., 1991; see also Fig. 4.6).

The advent of  has made it possible to examine the effects of disease on the diffusion
properties of anisotropic tissues—i.e. white matter. With mean diffusivity acting as a proxy for
overall water content, and anisotropy indices—in practice, almost invariably —indicating the
degree of “coherence” or “integrity” of the linear structure intrinsic to white matter, various low
level pathological processes such as oedema, neurotoxicity or Wallerian degeneration might
plausibly be expected to have some -visible impact. These d-derived measures have
therefore been applied to investigate the effects of a diverse array of diseases such as multiple
sclerosis, amyotrophic lateral sclerosis and Alzheimer’s disease (Horsfield & Jones, 2002); as
well as psychiatric disorders like schizophrenia, alcoholism and geriatric depression (Lim &
Helpern, 2002). More pathologies are being studied year on year.

There has also been significant interest in the effects of normal ageing on white matter
(Moseley, 2002; Sullivan & Pfefferbaum, 2006). Anisotropy has been found to be higher in
young adults than children (Klingberg et al., 1999), but it then tends to reduce with time through
adulthood and into old age (Pfefferbaum et al., 2000), presumably representing the processes
of maturation and then degradation of connective tissue. The gradual decline in white matter
integrity is accompanied by a tendency for subjects’ performance on mental tasks, particularly
those using working memory, to decrease with time; and may represent its cause. Moreover, it
has been shown that statistically compensating for mental ability in childhood—as measured
with an  test at age 11—substantially attenuates the relationship, at age 83, between  and
cognitive test performance (Deary et al., 2006), suggesting that childhood may have a bearing
on white matter integrity later in life.
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Another interesting aspect of normal ageing which has been investigated with d is
the phenomenon of leukoaraiosis—also known, rather less concisely, as periventricular white
matter hyperintensity—which manifests itself as regions of abnormally high signal on T2-
weighted images, and which occurs in many healthy older subjects as well as some stroke
patients. Jones et al. (1999) demonstrated higher diffusivity and lower anisotropy in areas of
leukoaraiosis than in normal tissue, and showed that a map of  highlights the distinction
between leukoaraiosis and the ventricles better than a T2-weighted image. More recently,
Bastin et al. (2007) further demonstrated that  correlates strongly with magnetisation transfer
ratiod in regions of leukoaraiosis, but not in comparable normal-appearing white matter,
indicating that the loss of white matter integrity in such regions may be tied to a breakdown
in myelination.

Due to the demands of q-space imaging on  hardware, it has been used far less than
other forms of d in the clinical domain. Those studies that have employed the technique
have been required to essentially abandon the narrow gradient pulse requirement—Assaf
et al. (2002, 2005) used the parameters δ = 65 ms and ∆ = 71 ms, at a b-value equivalent of
14,000 s mm−2; compared with 353,000 s mm−2 in a true q-space experiment (Biton et al., 2006),
and just 1000 s mm−2 in a typical  acquisition. However, it has been shown that even
under these circumstances, meaningful information about the displacement distribution can
be recovered (Lori et al., 2003).

Although d is unique as a technique for studying structural connectivity and white
matter integrity, functional magnetic resonance imaging (f), which gives an indication of
the level of activity across the brain, provides complementary information. By looking for
consistent patterns of correlated activity in different parts of the brain, a degree of functional
connectivity between regions can be inferred. There have been a number of attempts to
combine f and d data acquired from the same subject together (e.g. Cherubini et al.,
2007; Guye et al., 2003; Staempfli et al., 2008), and this is likely to remain an active research area
for some time.

4.6 Summary

We have discussed the physical process of diffusion, and the means by which diffusion dis-
placement distributions of varying complexity can be indirectly measured with. A number
of scalar indices indicating the shape of the diffusion tensor have been described—notably the
widely used fractional anisotropy. The uses to which these methods have been put in the clinic,
including studies of ageing and stroke, have also been briefly surveyed. The existence and
measurability of anisotropic diffusion in the white matter of the brain are crucial prerequisites
for d-based tractography; and it is to that application that we turn next.

dThe magnetisation transfer ratio is a metric derived from magnetisation transfer, a method which has not been
described above. It is sensitive to changes in large molecules such as myelin.


