
2

Probability and machine learning
principles

P will be a recurring theme throughout the thesis. Indeed, its influence is sur-
prisingly pervasive in the material making up the remaining chapters. The quantum

mechanical underpinnings of the  effect which are outlined in chapter 3 describe proba-
bilistic behaviours; the diffusion of water in the brain measured by d is fundamentally a
stochastic process; probabilistic sampling techniques are important to some of the tractogra-
phy methods described in chapter 5; and the machine learning methods that we apply to the
problem of tract selection in chapter 8 are probabilistic by their nature.

In this chapter we lay out the theory of probability and describe those machine learning
and inference methods upon which later chapters are dependent. General references for this
material include MacKay (2003) and Bishop (2006).

2.1 Fundamentals of probability theory

Consider a nondeterministic experiment, such as rolling a fair die. The result of this experiment
on any given trial will be one of exactly six possibilities, representing the number of spots on
the uppermost face of the die. Moreover, each of these possibilities is equally likely; so over a
very large number of trials, all six will occur an approximately equal number of times. This
kind of experiment is represented mathematically by a random variable, which we call X. The
set of possible outcomes, or sample space, relating to X is {1,2,3,4,5,6}. The probability of each
of these outcomes on a single trial is, of course, 1/6.

In general, we denote the sample space for a discrete random variable, X, as AX = {ai},
where each member of the set has a corresponding probability, pi. We write

Pr(x = ai) = pi ,

where “Pr” represents “the probability that”, and x represents a particular outcome. The result
x = ai is an example of an event, a concept which can generally encapsulate the occurrence of
any subset of the sample space: if E is some subset ofAX, we have

Pr(E) = Pr(x ∈ E) =
∑

ai∈E

Pr(x = ai) . (2.1)

In the example of the die, if E = {1,2}, then Pr(E)—the probability that the outcome of a trial is
either 1 or 2—is the sum of Pr(x = 1) and Pr(x = 2), i.e. 1/3.

The basic axioms of probability state that the probability of any event is greater than or
equal to zero, with the latter representing an impossible event; and that the probability of the
whole sample space is unity—i.e. every outcome must be drawn from the space. That is,

∀E ⊆AX . Pr(E) ≥ 0 Pr(AX) = 1 . (2.2)

10 Chapter 2. Probability and machine learning principles

Naturally, Eq. (2.2) additionally implies that Pr(E) ≤ 1. In general, given any pair of events, E1
and E2, the probability of their union is given by

Pr(E1∪E2) = Pr(E1)+Pr(E2)−Pr(E1∩E2) . (2.3)

This third axiom follows straight from Eq. (2.1). In the special case in which Pr(E1∩E2) = 0,
the two events cannot occur simultaneously and are therefore mutually exclusive.

We now consider another experiment, represented by the random variable Y, which consists
of flipping a coin. The sample space for this variable can be represented asAY = {0,1}, where 0
represents a tail and 1 a head. If we perform both experiments together, what is the probability
that the die roll produces a 6 and the coin toss gives a head? We represent this joint probability
as Pr(x= 6, y= 1). Since the roll of the die and the coin toss can be assumed to have no influence
on each other, the two events are independent and the joint probability is simply the product of
the individual probabilities. For the case of two events that are not independent, we need to
introduce the concept of a conditional probability, which is defined by

Pr(x = ai | y = bj) ≡
Pr(x = ai, y = bj)

Pr(y = bj)
if Pr(y = bj) ! 0 ,

and should be interpreted as “the probability that x = ai given that y = bj”. Hence, if we
omit the particular value of each outcome to indicate the general case, it follows by trivial
rearrangement that

Pr(x, y) = Pr(x | y)Pr(y) , (2.4)

which is called the product rule for probabilities. Consequently, the following are equivalent
statements of independence between X and Y:

Pr(x, y) = Pr(x)Pr(y) Pr(x | y) = Pr(x) .

Finally, given a group of joint probabilities, Pr(x, y), we can calculate the so-called marginal
probability, Pr(x), by summing over all possible values of y; an operation known as marginal-
isation:

Pr(x) ≡
∑

y∈AY

Pr(x, y) .

It follows from Eq. (2.4) that
Pr(x) =

∑

y∈AY

Pr(x | y)Pr(y) , (2.5)

a relationship which is called the sum rule for probabilities. These basic rules for combining
probabilities together are extremely important in machine learning.

2.2 Probability distributions

Every random variable has associated with it a probability distribution, which can be used to
assign to some interval [α,β] over the set of real numbers,R, a probability that the correspond-
ing outcome will fall within that interval on any given trial. For the example of our fair die,
the distribution is easily defined as

P(x) =
{

Pr(x) if x ∈AX
0 otherwise. (2.6)

In this case, P(x) is called the probability mass function (p.m.f.) for X. It then follows from
Eqs (2.1) and (2.6) that

Pr(α ≤ x ≤ β) =
∑

ai≤β
P(ai)−

∑

ai<α

P(ai) =
∑

ai≤β
Pr(ai)−

∑

ai<α

Pr(ai) ,

where Pr(ai) is shorthand for Pr(x = ai), and ai ∈AX in all cases.

2.2. Probability distributions 11

●

●

●

●

●

●

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αα

Pr
((x
≤≤
αα
))

●

●

●

●

●

●

Figure 2.1: Cumulative distribution functions for dis-
crete (black) and continuous (grey) uniform distribu-
tions. Open and closed circles indicate that each in-
terval with a particular cumulative probability is open
at one end and closed at the other; i.e. Pr(x ≤ α) = 1/6
for α ∈ [1,2), for the discrete case.

It may appear that the distribution function buys us nothing over the individual probabili-
ties for each outcome—after all, its only addition is to make explicit the fact that the probability
of an outcome outside of the sample space is zero, a fact which follows uncontroversially from
Eq. (2.2). However, the significance of probability distributions is far more obvious when we
deal with continuous random variables.

Consider a continuous analogue of the die-rolling scenario, in which the outcome can be
any real number in the interval [0,6]. The distribution for this continuous random variable is
now defined by a probability density function (p.d.f.); specifically

P(x) =
{

1
6 if 0 ≤ x ≤ 6
0 otherwise. (2.7)

Notice that this distribution, while similar to the p.m.f. for the discrete case, is nonzero at
an infinite number of points. As a result, the value of this p.d.f. at any given point does not
represent a probability—if it did, the sum of probabilities across the sample space would be
infinite, which defies the axioms of Eq. (2.2). Instead, the p.d.f. represents probability density,
which is related to probability through integration:

Pr(α ≤ x ≤ β) =
∫ β

α
P(x)dx .

Consequently, the probability of an outcome having any particular value—i.e. Pr(x = α)—is
zero for all values of α ∈ R, both within and outside the sample space, for any continuous
random variable.

Every interval over the real numbers is a subset of R, so the normalisation axiom in Eq.
(2.2) implies that ∫ ∞

−∞
P(x)dx =

∫

AX

P(x)dx = 1 , (2.8)

since that part of the integral that is outside the sample space will be equal to zero.
The difference between the discrete and continuous versions of the distribution are most

easily illustrated by comparing their cumulative distribution functions (c.d.f.s), which map each
real number, α, to the probability that x is less than or equal to α. These functions are shown
graphically in Fig. 2.1. It can be seen that Pr(x ≤ α) increases in jumps for the discrete case
and smoothly for the continuous case; but for all integer values of α, the value of the c.d.f. is
the same in both cases. Note that the c.d.f. is zero for all values below the lower bound of the
sample space, and unity for all values above its upper bound, in each case.

12 Chapter 2. Probability and machine learning principles

Probability distributions are not only used in relation to static events—it is also common
to consider a sequence of random variables, (X(t)), which are parameterised by t, often repre-
senting time in some sense. This parameter may be discrete or continuous. Such a collection
of related variables, used to represent the state of some time-dependent system, is called a
stochastic process. The evolution of such a process over time is then described by conditional
distributions, such as P(X(t) |X(t−1),X(t−2), . . .) for the discrete-time case.

A final foundational concept with regard to probability distributions is that of the expecta-
tion of a random variable, which is essentially a weighted mean value over the sample space.
For a discrete random variable, X, it is defined as

〈X〉 =
∑

x∈AX

xP(x) , (2.9)

and equivalently, using an integral, for the continuous case. Note that the expectation is a
property of the random variable—or equivalently, its distribution—rather than of any outcome.
We can also find the expectation of a function of X with respect to its probability distribution:

〈 f (X)〉 =
∑

x∈AX

f (x)P(x) . (2.10)

If we know the distribution of a particular random variable, we can deduce the distribution
of other random variables related to it. Let us assume that X ∼ U(0,6), which is shorthand to
say that X is uniformly distributed over the sample space [0,6], as described by Eq. (2.7). We
now wish to know the distribution of the random variable

Y = 1−
√

X .

We cannot find the distribution of Y by simply mapping the sample space accordingly, because
this nonlinear function of X cannot be expected to have a uniform distribution itself; and even
if it were linear, we would still need to ensure that the new distribution remains properly
normalised. Instead, the rules of integration by substitution (Riley et al., 2002) tell us that,
using the Leibniz notation,

dx =
∂x
∂y

dy = 2(y−1)dy ;

so from Eq. (2.8),
∫ 6

0

1
6

dx =
∫ 1−

√
6

1

2(y−1)
6

dy =
∫ 1

1−
√

6

1− y
3

dy = 1 .

The distribution for Y is thus P(y)= (1− y)/3, and the sample space isAY = [1−
√

6,1]. It should
be noted that substitutions for functions of more than one original variable are more complex,
requiring the calculation of a Jacobian matrix of partial derivatives.

This process of finding the distribution of one random variable from that of another is very
important when artificially sampling from a distribution. We sometimes wish to generate data
with a certain distribution without truly sampling the value of an appropriate random variable
many times; and while computing environments typically provide a method to generate
uniformly distributed pseudorandom numbers, an appropriate transformation is needed to
turn these into samples from the distribution of interest.

2.3 Inference and learning

So far we have talked about probabilities in terms of the chance of a particular event happening,
on average, as a result of running a trial of a particular experiment. This interpretation of
probability is the classical frequentist interpretation. However, there is an alternative, and
broader, interpretation of probability which includes the sense of a degree of belief. Consider,
for example, the relationship between the fact that the sky is cloudy and the fact that it is
raining. Intuitively, if we are told that the sky is cloudy then it seems much more likely

2.3. Inference and learning 13

that it is raining than if we are told that the sky is clear, or if we know nothing at all about
state of the sky. However, the proposition “it is raining” cannot be strictly represented by a
random variable since the experiment required to find an outcome (for example, going outside
to look) is deterministic. Either it is raining or it isn’t—there can be no two ways about it. It
is also unrepeatable, since it is fixed to a particular time and we cannot sample the state of the
weather right now many times. However, if we allow the broader interpretation of probability,
we can admit a conditioned probability Pr(raining |cloudy), which represents how strongly we
believe our proposition, given the truth of another proposition which says “the sky is cloudy”.
Moreover, we can use a distribution over the state space, in this case {raining,not raining}, to
encapsulate the uncertainty we have about the proposition.

If this talk of using some propositions to inform others sounds like logical deduction, it
is no coincidence. Some authors who subscribe to this broader, Bayesian, interpretation of
probability—notably Jaynes (2003)—have been keen to frame it as a form of logical framework
for the uncertain propositions that are common in science.

Note that before we are told about the state of the sky, it cannot influence our belief of
whether it is raining or not. As a result, the prior probability that it is raining, Pr(raining),
may be assumed to take the value 0.5, indicating total uncertainty. The distribution is then
uniform over the two outcomes, which is an uninformative prior distribution because it tells us
nothing except the size of the state space, which we already know. On the other hand, it may
be that assumptions and information unrelated to the sky conditions could be incorporated
into the prior distribution. Say, for example, that weather records tell us that it typically rains
20 per cent of the time—in that case we might instead use the prior Pr(raining) = 0.2. This
is a trivial case of inference, whereby we use sample data—the weather records—to infer the
nature of the distribution that is used to predict future weather. Note that we need to make an
assumption, that previous weather will be representative of the future, in order to do even this
simple an inference. In general, the making of assumptions is a prerequisite for inference.

Let’s say that we have encoded our prior knowledge in a distribution of some kind. Now,
introducing the knowledge that it is cloudy will alter the plausibility of the proposition that it
is raining, but how? Given the fact that joint probabilities are symmetric, i.e. P(x, y) = P(y,x),
the relationship between the prior probability and the conditioned posterior probability can
be established straight from Eq. (2.4). It is

Pr(raining |cloudy) =
Pr(cloudy |raining)Pr(raining)

Pr(cloudy)
.

This relationship is the extremely important result known as Bayes’ rule, after the 18th century
mathematician and clergyman, the Rev. Thomas Bayes. It is significant because it describes a
mathematical way to use relevant information to update the level of belief in a proposition—
that is, to learn.

It turns out that the rules for manipulating probabilities that we looked at earlier can be
applied to probability densities as well as probabilities, although showing that this is the case
requires a more formal exploration of probability in terms of measure theory, which is beyond
our scope here (see Kingman & Taylor, 1966). The same applies to Bayes’ rule, so we can write
in general,

P(x | y) =
P(y |x)P(x)

P(y)
. (2.11)

The denominator of this equation, known in this context as the evidence, is commonly ex-
panded using Eq. (2.5), in which the sum is replaced by an integral for the continuous case:

P(y) =
∫

AX

P(y |x)P(x) . (2.12)

At this point, having introduced the Bayesian interpretation of probability, we will drop
the notational distinction between distribution variables (including random variables) and
outcome variables which has been used so far. This is common practice in the literature, and
it helps to reduce the quantity of notation needed for dealing with more complex problems.

14 Chapter 2. Probability and machine learning principles

2.4 Maximum likelihood

We now have the tools in place to consider a more practically interesting example. Let us say
that we have a random variable, x. We suspect that x is approximately normally distributed;
that is, x∼N(µ,σ2), where µ (the mean) and σ2 (the variance) are parameters of the distribution.
We do not know what these parameters are, but if we want to make predictions about x we
will need to know them. The definition of the normal, or Gaussian, distribution tells us that

P(x |µ,σ) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
. (2.13)

In order to make any progress towards establishing µ and σ, we need some information.
Let us assume that we have a data set, D = {di} for i ∈ {1..N}, of example values of x. Since we
are working on the assumption that x has the distribution given above, these data are assumed
to be samples from the distribution. We assume that each sample has no dependence on any
other, and that the values of µ and σ did not vary across the sample, a combination called the
assumption of independent and identically distributed (i.i.d.) data. Hence, the product rule gives
us a joint distribution for the whole sample data set:

P(D |µ,σ) =
N∏

i=1

P(di |µ,σ) . (2.14)

The distribution given in Eq. (2.14) may not appear to get us any closer to an actual estimate
for the parameters. But note that, from Eqs (2.11) and (2.12),

P(µ,σ |D) =
P(D |µ,σ)P(µ,σ)

!

P(D |µ,σ)P(µ,σ)dµdσ
. (2.15)

Note that the distribution P(D |µ,σ), which is known as the likelihood of the parameters, is
meaningful in a frequentist sense, since the elements of the data set are sample outcomes of
the random variable x. However, the prior and posterior distributions over the parameters
possess only Bayesian significance, since their values are fixed but unknown.

It makes intuitive sense to use as an estimate of the parameters those values which sit
at the mode—that is, the point of maximal probability density—of the posterior distribution
P(µ,σ |D). This approach amounts to finding the most likely values of the parameters in light of
the sample data available. If we have no prior information about the parameters, so that P(µ,σ)
is uninformative, then maximising the posterior is equivalent to maximising the likelihood,
since the evidence is a normalisation factor that is not dependent on the values chosen for µ
and σ. Hence, we can find a maximum likelihood estimator for the parameters by maximising the
value of Eq. (2.14) with respect to them.

In practice, it is often mathematically easier to maximise the (natural) logarithm of the
likelihood. This is valid because lnn will always increase when n increases—we say that
the logarithm is a monotonically increasing function. Elementary calculus tells us that at the
maximum of a function its derivative is zero, so from Eqs (2.13) and (2.14), our estimator of µ
is given when

∂
∂µ


−

1
2

N∑

i=1

ln2πσ2− 1
2σ2

N∑

i=1

(di−µ)2


 = 0 .

Solving this equation gives us the value of the estimator for µ as

µ̂ =
1
N

N∑

i=1

di .

The “hat” notation is commonly used to indicate an estimate. Note that this maximum like-
lihood () estimate is exactly equal to the mean of the sample. The maximum likelihood

2.4. Maximum likelihood 15

● ●● ● ● ●● ● ● ●●●● ●● ●●●● ●● ●● ●●

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(a)

x

P(
x)

2.
6

2.
8

3.
0

3.
2

3.
4

(b)

Sample size

Es
tim

at
ed

 m
ea

n

10 1000 100,000

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
● ● ● ● ●

Figure 2.2: Maximum likelihood estimation for a Gaussian distribution. (a) A set of sample data (black
points), the generating distribution (light grey line) and estimated distribution (dark grey line). (b) The
estimated mean approaches the generative mean as the size of the sample vector increases.

variance also turns out, in this case, to be the given by the (biased) variance of the sample, viz.

σ̂2 =
1
N

N∑

i=1

(di− µ̂)2 .

The two parameters can be estimated separately because µ̂ has no dependence on σ̂. It is
possible to demonstrate, by taking second derivatives, that these estimates really represent a
maximum in the likelihood function.

Let’s take a step back at this point and consider what we have done. We were given a
set of sample values of x. We hypothesised, and thereafter assumed, that the samples were
drawn from a Gaussian distribution with unknown mean and variance. In the language
of machine learning, this Gaussian distribution is our model for the data, and µ and σ are
parameters associated with that model. We have no direct way of establishing the values of
these parameters, but we used the observed data and Bayes’ rule, which can be summarised
in words as

posterior =
likelihood×prior

evidence
,

to learn the most likely estimate for the parameters given the observed data. Since our model
describes a distribution which could be used to generate data like D, it is called a generative
model.

The process is illustrated by Fig. 2.2(a). A sample of 25 points are shown in black—these
were sampled from a Gaussian distribution with mean 3 and variance 1, whose p.d.f. is shown
by the lighter curve. The learnt model distribution is the darker curve. It can be seen that the
peak of the distribution—the mode, which is equal to the mean for a Gaussian distribution—is
slightly offset from that of the generating distribution, and the “broadness” of the curve—
which indicates the variance—is slightly less. Nevertheless, the estimated distribution may be
considered a satisfactory approximation, and thus useful for predicting the general behaviour
of the variable x. Not surprisingly, increasing the size of the sample vector will produce
maximum likelihood estimators that are closer, on average, to the generative parameters—as
demonstrated by Fig. 2.2(b). This effect is called the law of large numbers.

It should be remembered that the maximum likelihood method implicitly assumes that the
priors in Eq. (2.15) are uninformative. If, on the other hand, meaningful prior information is

16 Chapter 2. Probability and machine learning principles

available, and we wish to take a more firmly Bayesian approach, we can calculate the maximum
of the posterior distribution with the prior distribution incorporated into it. This more general
approach to choosing an estimate for the parameters is called the maximum a posteriori ()
method, and it allows us to influence the parameter estimate based on what we know in
advance.

2.5 Expectation–Maximisation

Unfortunately, it is quite easy to find cases in which simple maximum likelihood estimation
is insufficient to find an estimate for a set of parameters. Consider the two-dimensional, or
bivariate, version of the Gaussian distribution described by Eq. (2.13). It is

P(x, y |µ,σ) = 1
2πσ2 exp


−

(x−µx)2+ (y−µy)2

2σ2


 . (2.16)

This is effectively a special case of Eq. (2.14), because we are treating the x and y dimensions as
independent. This will only be the case if the covariance between x and y is zero; but we make
that assumption here to avoid overcomplication. Note also that the mean, µ = (µx,µy), is now
a vector quantity since it has a component in each dimension. Consider now

P(x, y |θ) = aP1(x, y |θ)+ (1− a)P2(x, y |θ) , (2.17)

where each of P1 and P2 have the distribution given in Eq. (2.16), and θ = {µ1,σ1,µ2,σ2} is a
collection of all the parameters of this model. Eq. (2.17) is called a Gaussian mixture model,
because it is made up of a combination of two independent Gaussian distributions over the
same parameter space. The parameter a, which must be in the interval [0,1] to ensure that the
overall distribution is properly normalised, is called the mixture coefficient. We include it in
the set φ = {µ1,σ1,µ2,σ2,a}, a superset of θ.

In a generative sense, any sample data point must be drawn from exactly one of the
component distributions, P1 and P2. We say there is a latent variable, which we denote zi,
associated with each data point, di. We can characterise this variable by defining

zi =

{
1 if di was drawn from P1
0 otherwise. (2.18)

By analogy with the maximum likelihood estimation process for a single Gaussian distri-
bution, we might expect to be able to infer the mean and variance of P1 according to

µ̂1 =

∑N
i=1 zidi
∑N

i=1 zi
σ̂2

1 =

∑N
i=1 zi ‖di− µ̂1‖2∑N

i=1 zi
, (2.19)

where ‖ ·‖ is the Euclidean norm; and similarly for P2. (Note that
∑

i zi is equal to the number
of data points that were drawn from P1.) However, without any knowledge of the set Z = {zi},
Eq. (2.19) cannot be evaluated, and so no estimate for φ can be calculated. Conversely, if φ
were known then Z could be inferred, but we have neither.

The Expectation–Maximisation () method provides a way to estimate both φ and Z
simultaneously, thus sidestepping the problem of their mutual dependency (Dempster et al.,
1977). The method is initialised by choosing a first estimate, φ̂, for the parameters. After that,
an expectation step, or “-step”, and a maximisation step, or “-step”, are applied iteratively
until some termination criterion is met. Each -step calculates a posterior distribution for Z
based on the current parameter estimate, while the -step updates the parameters.

We once again assume that the elements of our data set, D = {di}, are i.i.d., and hence the
values of zi are also independent. As a result, the posterior over Z can be expanded to

P(Z |D, φ̂) =
N∏

i=1

P(zi |di, φ̂) , (2.20)

2.5. Expectation–Maximisation 17

and so we can consider the posterior for each zi individually. Bayes’ rule gives us

P(zi |di, φ̂) =
P(di |zi, φ̂)P(zi | φ̂)
∑

zi
P(di |zi, φ̂)P(zi | φ̂)

, (2.21)

where
∑

zi
is shorthand for the sum over the sample space of zi. Note that the distributions

over zi are discrete, so the prior P(zi = 1) is meaningful, and will in general be nonzero. Its exact
value will be given by the current estimate for the mixture coefficient, â, which is updated by
the -step below; and P(zi = 0) follows directly by normalisation.

Observe that the particular case P(di |zi = 1, φ̂) is equivalent to P1(di | θ̂), a fact that follows
straight from the definition of zi in Eq. (2.18). As a result, we can expand Eq. (2.21) by exhaustive
enumeration of the two outcomes, as follows.

P(zi = 1 |di, φ̂) =
âP1(di | θ̂)

âP1(di | θ̂)+ (1− â)P2(di | θ̂)
(2.22)

P(zi = 0 |di, φ̂) =
(1− â)P2(di | θ̂)

âP1(di | θ̂)+ (1− â)P2(di | θ̂)
(2.23)

The job of the -step is to refine our current estimate for φ̂. In order to do this, we need
concrete values for each zi. Since the -step has already calculated posterior distributions for zi
in Eqs (2.22) and (2.23), we simply take as our zi values the expectations of these distributions:

〈zi〉 =
∑

zi

ziP(zi) = P(zi = 1) .

Note that due to the nature of the definition of zi, this expectation is equal to the value of
P(zi = 1) calculated in Eq. (2.22). Hence, using these values for zi, we can update our estimates
for the means and variances of P1 and P2 with , according to Eq. (2.19).

All that remains for the -step is to update â, the remaining element of φ̂. Our estimate for
this parameter is the expected mean value of the set of latent variables, given by

â =
〈

1
N

N∑

i=1

zi

〉
=

1
N

N∑

i=1

〈zi〉 =
1
N

N∑

i=1

P(zi = 1) .

Fig. 2.3 shows a graphical representation of the process, in which each small filled circle
represents a data point. The posterior distribution over each latent variable, as calculated by
the -step, is indicated by a colour, with pure red indicating that P(zi = 1 |di, φ̂) = 1, and pure
blue indicating the opposite definite outcome. Hence, the shade of each data point represents
how likely it is to be drawn from each of the component distributions. It can be seen that after
a single iteration of the algorithm, the estimated component distributions, which are updated
by the -step, have a large variance and significant overlap; and as a result the assignment of
data to each component is uncertain, so all points appear in shades of purple. By contrast, after
11 further iterations, the algorithm has converged to a stable solution and most points appear
red or blue, since they are much more likely to be from one component distribution than the
other. There is just one point that remains ambiguous.

A useful way to gauge the progress of the algorithm is to plot the overall data log-likelihood
(), given by

lnP(D | φ̂) =
N∑

i=1

lnP(di | φ̂) =
N∑

i=1

ln



∑

zi

P(di |zi, φ̂)P(zi | φ̂)


 ,

which can be calculated after each iteration of the algorithm. The  gives us an idea of
how well the current model explains the data. Since  is a maximum likelihood technique—
differing practically from the simpler  estimation of §2.4 in that it can cope with models that

18 Chapter 2. Probability and machine learning principles

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

(a)

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x
y

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

(b)

Figure 2.3: Results of applying Expectation–Maximisation to a Gaussian mixture model, after one iteration
(a) and at convergence (b). Each large circle represents a component distribution, centred at the mean and
with radius equal to one standard deviation. Data points with zi closer to 1 are more red, and those closer
to 0 are more blue. The generating distribution has parameters µ1 = (0.3,0.3), µ2 = (0.7,0.7), σ1 = σ2 = 0.1,
and a = 0.5.

●

● ● ●
●

●

●

●

●
● ● ●

2 4 6 8 10 12

0
10

20
30

40

Iteration

Da
ta

 lo
g

lik
el

ih
oo

d

Figure 2.4: Typical plot of data log-likelihood as the
Expectation–Maximisation algorithm progresses.

2.6. Sampling methods 19

include latent variables—we might expect that the would be at its peak when the algorithm
terminates.

An example plot of  is shown in Fig. 2.4. The first -step produces a very large increase
in  (not shown), after which there is a general increase, ending with a final asymptotic
convergence on a maximum likelihood value. Note is that there is never a drop in  from one
iteration to the next. This is guaranteed by the theory of the method, which is beyond our
scope here (see Bishop, 2006).

2.6 Sampling methods

Up to this point we have dealt with very simple, analytically tractable model distributions;
and moreover we have been happy to work with a single estimate for the parameters of the
model. However, a maximum likelihood estimator for the parameters does not always exist;
and in practice it is often useful to be able to fully characterise a distribution over the model
parameter space—that is, the joint sample space of all parameters.

Consider a general case in which we have a scalar valued quantity, x, modelled by a distri-
bution with parameter set θ. The now-familiar Bayes’ rule defines the posterior distribution
for the parameter set according to

P(θ |x) =
P(x |θ)P(θ)

P(x)
, (2.24)

where

P(x) =
∫

Aθ
P(x |θ)P(θ)dθ . (2.25)

If we can evaluate the normalisation constant, Eq. (2.25), analytically then it will be possible
to characterise Eq. (2.24) exactly. The full posterior distribution over θ would then be able to
provide information on not only the most likely value of θ—i.e. the mode of the distribution—
but also on the extent to which such an estimate is likely to be valid or useful. For example,
the distribution might have multiple modes, in which case taking a single estimate for the
parameters may be inappropriate.

The problem is that for a complicated likelihood function, the integral in Eq. (2.25) may
be impossible to evaluate analytically, putting exact marginalisation out of reach. Similar
problems occur when trying to find the expectation of a function with respect to a complex
distribution. In such cases, it may instead be practical to approximately infer the target density
over θ by drawing samples from it. Given a set of these samples, {θ(i)} for i ∈ {1..N}, the
approximation is then a probability mass function of the form

P̂(θ) =
1
N

N∑

i=1

Pδ(θ |θ(i)) , (2.26)

where Pδ(θ) is a p.m.f. analogue of the Dirac delta function:

Pδ(θ |θ(i)) =
{

1 if θ = θ(i)

0 otherwise.

This is the principle of so-called Monte Carlo () methods, which include the sampling
techniques described below (for a review see Andrieu et al., 2003). Of course, the approach
presupposes that it is possible to evaluate the distribution of interest, but this is the case
often enough for the assumption to be tenable for a wide range of practical problems. In
fact, it is sufficient to evaluate the target density to within a multiplicative constant, since
the approximating p.m.f., Eq. (2.26), is self-normalising. This is extremely useful, because it
obviates the need to evaluate the evidence term in Eq. (2.24) when sampling from the posterior
distribution.

20 Chapter 2. Probability and machine learning principles

Moreover, by the law of large numbers the expectation of some function, f , with respect
to P̂(θ) will converge towards the expectation of the same function with respect to the true,
continuous distribution for θ as N increases:

〈 f (θ)〉P̂(θ) =
1
N

N∑

i=1

f (θ)Pδ(θ |θ(i)) =
1
N

N∑

i=1

f (θ(i)) N→∞−−−→ 〈 f (θ)〉P(θ) =

∫

Aθ
f (θ)P(θ)dθ .

The issue now becomes one of choosing samples: how can we efficiently generate pseu-
dorandom numbers which accurately represent the unknown target distribution? We are
generally primarily interested in regions of the parameter space in which P(θ) is relatively
large, but how can we identify such places without evaluating the distribution everywhere?

The naïve method of sampling at every point on a grid throughout the space will quickly
become unfeasible, especially if the space has high dimensionality—that is, if there are a large
number of parameters. The next most simple approach is to choose points randomly and
uniformly from the parameter space, and sample the distribution at those points. However,
since areas of high probability density are usually concentrated in a small region of the space,
the number of samples required to ensure that this typical set is reached at least a few times
will still often be prohibitively large.

2.6.1 Rejection sampling

A more sophisticated general approach to the sampling problem is to avoid sampling directly
from the unknown target density, P(x), and instead sample from a known, simpler proposal
density. In particular, if we can evaluate P̃(x) = zP(x), where z is an unknown constant, and we
can find a proposal density, Q(x), and a finite positive real number, k, such that P̃(x) ≤ kQ(x) for
all real x, then we can apply a method known as rejection sampling.

Fig. 2.5(a) shows a situation in which this approach is appropriate. In this case the target
density is a Gaussian mixture with component means at x = 3 and x = 5; and the proposal
density is a simple Gaussian distribution, centred at x = 3.5, with k = 2. In a one-dimensional
case such as this, it is easy to see by inspection that the proposal density is always greater than
the target density.

The process for generating N samples from the target density is given by Algorithm 2.1.
In common with most  methods, the rejection sampling algorithm involves the use of
(uniformly distributed) random numbers. At each step, a candidate sample, x∗, is generated
from the proposal distribution and a random number, u, is drawn from a uniform distribution
over [0,1]. Then, if

u <
P̃(x∗)

kQ(x∗)
,

the sample is “accepted” as a sample from P̃(x); otherwise it is rejected and another candidate
sample is drawn. The significance of this acceptance criterion is shown by Fig. 2.5(a): it
amounts to a test of whether the quantity ukQ(x∗), which is uniformly distributed between

Require: k ∈ (0,∞)
1: i← 0
2: repeat
3: Sample x∗ ∼Q(x) and u ∼U(0,1)
4: if ukQ(x∗) < P̃(x∗) then
5: i← i+1
6: x(i)← x∗ [Accept x∗]
7: else
8: Reject x∗
9: end if

10: until i =N
Algorithm 2.1: Rejection sampling for N samples.

2.6. Sampling methods 21

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

Pr
ob

ab
ilit

y
de

ns
ity

kQ(x)

P~(x)

reject

accept

(a) (b)

x

P(
x)

2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 2.5: Rejection sampling for a univariate Gaussian mixture. (a) The target and proposal densities.
Samples from the proposal density will be accepted if ukQ(x∗) < P̃(x∗)—this corresponds to the shaded area
under the target curve. (b) Histogram of the accepted samples, overlaid with the exact target density. In this
case 51% of samples from the proposal density were accepted.

zero and the value of the proposal density at x = x∗, falls below the target density. Thus more
samples will be accepted in regions where the two densities are very similar, and far fewer in
areas where P̃(x)4 kQ(x). As a result, the technique is most efficient when the proposal density
closely approximates the target density. In particular, the two should have as large an overlap
in their typical sets as possible. This is certainly the case in our example: both densities are
defined for all real numbers, but the vast majority of the probability mass is in the interval [0,8].
A uniform proposal density is the worst case, in which case rejection sampling is equivalent to
uniform sampling.

After choosing 1000 samples from the proposal distribution, of which 51% were accepted,
Fig. 2.5(b) shows a histogram of the accepted samples for a single run of our example case. It
can be seen that the normalised histogram agrees quite well with the true target distribution,
which is overlaid.

The probability that any given candidate sample is accepted is given by the expectation of
the density ratio with respect to the proposal distribution:

Pr(accepted) =
∫

Ax

P̃(x)
kQ(x)

Q(x)dx =
1
k

∫

Ax

P̃(x)dx =
z
k
.

Hence in the example, where z = 1 and k = 2, we expect around half of samples to be ac-
cepted. However, this relationship highlights a crucial shortcoming of rejection sampling—as
k increases, fewer and fewer samples will be accepted, so the run time required to obtain a
reasonable sample size from the target density will also increase. For target distributions over
high-dimensional sample spaces, it may be hard to find an appropriate value for k at all; but
even if one can be found it will tend to be large, making the method impractical. In such cases,
it will be necessary to be more clever about the choice of sampling locations.

2.6.2 Markov chain Monte Carlo

A Markov chain is a particular type of discrete-time stochastic process in which the state of the
system at time t is dependent only on its state at the previous time step, t−1. That is,

P(x(t) |x(t−1),x(t−2), . . . ,x(0)) = P(x(t) |x(t−1)) ; (2.27)

22 Chapter 2. Probability and machine learning principles

1: Initialise x(0)

2: for i ∈ {1..N} do
3: Sample x∗ ∼Q(x |x(i−1)) and u ∼U(0,1)
4: if u < A(x∗,x(i−1)) then
5: x(i)← x∗
6: else
7: x(i)← x(i−1)

8: end if
9: end for

Algorithm 2.2: The Metropolis and Metropolis–Hastings algorithms. The difference between the two
methods is in the choice of acceptance function, A.

the so-called Markov property. The distribution on the right hand side of Eq. (2.27) is called a
transition kernel.

A subclass of  techniques called Markov chain Monte Carlo () methods are de-
signed such that the set of samples drawn forms a Markov chain with the target density as
an invariant distribution. Details on how this is achieved can be found in more complete
treatments of methods, such as Neal (1993).

The Metropolis algorithm (Metropolis et al., 1953) is an early  method which assumes
that the proposal density from which candidate samples, x∗, are sampled is symmetric in the
sense that

Q(x∗ |x(i)) =Q(x(i) |x∗) .
Under these circumstances a candidate sample drawn from this distribution is accepted with
probability

A(x∗,x(i)) =min
{

1,
P̃(x∗)
P̃(x(i))

}
, (2.28)

where P̃(x) is proportional to the target density, P(x), as before. If the candidate sample is
accepted then it becomes the new sample, x(i); if not, then the new sample is the same as
the previous one: x(i) = x(i−1). Thus the effect of rejecting a sample differs from the rejection
sampling approach in that a new sample is always created on each step of the algorithm.

It can be seen directly from Eq. (2.28) that if the value of the target density at x∗ is greater
than that at x(i), then the sample will always be accepted. On the other hand, if the proposed
new sample location represents a substantial drop in probability density, then it is very unlikely
to be accepted, and the chain is most likely to remain in its previous state. The result of this
policy is that the chain will spend most time in regions of the sample space where the target
density is high-valued, as we require.

The Metropolis algorithm was later generalised by W. Keith Hastings to include the case in
which the proposal distribution is not symmetric (Hastings, 1970). In this case the acceptance
probability is given by

A(x∗,x(i)) =min
{

1,
P̃(x∗)Q(x(i)|x∗)

P̃(x(i))Q(x∗ |x(i))

}
. (2.29)

Algorithm 2.2 describes the Metropolis and Metropolis–Hastings algorithms, given ap-
propriate forms for A. It is important to note that unlike the rejection sampling method,

1: Initialise x(0)

2: for i ∈ {1..N} do
3: Sample x(i)

1 ∼ P(x1 |x(i−1)
2 ,x(i−1)

3 , . . . ,x(i−1)
n)

4: Sample x(i)
2 ∼ P(x2 |x(i−1)

1 ,x(i−1)
3 , . . . ,x(i−1)

n)
5: etc.
6: end for

Algorithm 2.3: Gibbs sampling over a vector quantity, x.

2.7. Summary 23

Metropolis–Hastings generates correlated, rather than independent, samples. However, if a
subset consisting of, say, every 50th sample is taken, then these may be considered to be close
enough to independent for most practical purposes. The proportion of samples which may be
kept whilst retaining approximate independence will depend on the exact form of the proposal
density, as will the performance of the method in approximating its target. In particular, if
the variance of the proposal density is very large, few candidate samples will be accepted,
resulting in highly correlated samples; and if it is very small then some significant regions of
the parameter space may be left unexplored.

The extension of these methods to the multivariate case where each sample is a vector, x(i),
just requires that the proposal distribution be defined in the appropriate number of dimensions.
There is no change needed to the algorithms themselves. However, under a popular special
case of the Metropolis–Hastings algorithm called Gibbs sampling, each element of such a vector
is sampled from a different proposal distribution (Geman & Geman, 1984). This method
requires that the conditional distributions of each element in the sample vector given all other
elements be known, because these are used as the proposal distributions (see Algorithm 2.3). It
can be shown that under these circumstances, the acceptance probability for samples is unity,
and so this method is highly efficient.

2.7 Summary

In this chapter we have reviewed the basic principles of probability, and explained how the
strict, frequentist interpretation of probability can be broadened to encompass any proposition
with which uncertainty is associated. We have also looked at the basic mechanisms of inference
and learning from data, which typically involve the use of Bayes’ rule. The rationale for
maximum likelihood and maximum a posteriori parameter estimates has been explained, and
methods for calculating such estimates, including the Expectation–Maximisation approach,
have been outlined. Finally, we explored ways in which a probability distribution, whose
exact form cannot be calculated analytically, can be approximated efficiently from data. The
probabilistic perspective will appear commonly throughout the remainder of this thesis, and
we will outline techniques which rely on some of the tools and ideas marshalled above.

