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Abstract. Neighbourhood tractography aims to automatically segment equiva-
lent brain white matter tracts from diffusion magnetic resonance imaging 
(dMRI) data in different subjects by using a “reference tract” as a prior for the 
shape and length of each tract of interest. In the current work we present a 
means of improving the technique by using references tracts derived from 
dMRI data acquired from 80 healthy volunteers aged 25–64 years. The refer-
ence tracts were tested on the segmentation of 16 major white matter tracts in 
50 healthy older people, aged 71.8 (±0.4) years. We found that data-generated 
reference tracts improved the automatic white matter tract segmentations com-
pared to results from atlas-generated reference tracts. We also obtained higher 
percentages of visually acceptable segmented tracts and lower variation in wa-
ter diffusion parameters using this approach. 

Keywords: MRI; Brain; White matter; Unsupervised segmentation; Tractog-
raphy. 

1 Introduction 

Tractography uses dMRI data to reconstruct in vivo the white matter 
connections within the brain [1]. Clinical applications of tractography 
typically involve group analysis, where tract characteristics are exam-
ined across a patient group of interest, or compared to a matched con-
trol group. In these instances, sources of nuisance variance within and 
between groups—and in particular any variability introduced by the 
tract segmentation method—need to be kept to a minimum to facilitate 
detection of true biological differences and avoid spurious findings. 
Probabilistic neighbourhood tractography (PNT) aims to reduce opera-
tor interaction, and therefore any potential variability induced by it, 
during the tract segmentation process. PNT automatically segments the 



same white matter fasciculus in different subjects by scoring the simi-
larity between a predefined “reference tract” and a group of candidate 
tracts generated with different initial seed points within a neighbour-
hood [2, 3]. Other automated tract segmentation tools informed by prior 
information have also been developed [4] 
Reference tracts can be generated directly from dMRI data, or from an 
atlas or similar reference point. In either case, the underlying reference 
dataset should be representative of the population. A suitably large and 
diverse “training” dataset is subsequently used to capture the variability 
typically observed around each reference tract. However, this set of 
training data should generally be kept separate from the data that will 
be used for hypothesis testing, to prevent any potential bias during 
analysis. To avoid use of valuable testing data in the creation of refer-
ence tracts, and for consistency across studies, a set of reference tracts 
has been previously derived from a white matter atlas, which is inde-
pendent of all new subject data acquired [5, 6]. These atlas-based refer-
ence tracts improved significantly the results from PNT, however a 
small a proportion of the segmented tracts still needed excluding after 
visual inspection [7]. 
In the current work, we are proposing a new set of reference tracts di-
rectly derived from dMRI data acquired from a large group of healthy 
volunteers with a wide age range, so as to capture the variability due to 
age. We then test these new reference tracts on a different set of healthy 
older volunteers.  

2 Methods 

2.1 Participants 

Training data. The reference and training data consisted of brain 
dMRI from 80 clinically normal, right-handed, healthy volunteers (40 
males, 40 females) aged 25–64 years. All subjects gave written in-
formed consent. Health status was assessed using medical question-
naires and all structural MRI scans were reported by a fully qualified 
neuroradiologist. More details can be found in previous publications 
[8]. 

Testing data. The testing data consisted of brain dMRI data from 50 
healthy, community-dwelling older participants from the Lothian Birth 



Cohort 1936 (LBC1936), all born in the same year, with average age 
71.8 ± 0.4 years at the time of scanning. More details of this cohort 
have been published previously [9]. 

2.2 MRI 

All brain MRI data were acquired using the same GE Signa Horizon 
HDxt 1.5T clinical scanner (General Electric, Milwaukee, WI, USA) 
equipped with a self-shielding gradient set (33 mT/m maximum gradi-
ent strength) and manufacturer supplied eight-channel phased-array 
head coil. The same dMRI protocol was used for both training and test-
ing data. The acquisition consisted of seven T2-weighted (T2W; b=0 
s/mm2) and sets of diffusion-weighted (b=1000 s/mm2) single-shot, 
spin-echo, echo-planar (EP) imaging volumes, acquired with diffusion 
gradients applied in 64 non-collinear directions [10] and 2 mm iso-
tropic spatial resolution. 

2.3 Image analysis 

dMRI volumes were preprocessed using FSL tools (http://www. 
fmrib.ox.ac.uk/fsl) to extract the brain [11], remove bulk motion and 
correct eddy current induced distortions by registering all subsequent 
volumes to the first T2W EP volume [12]. The water self-diffusion ten-
sor was calculated, and parametric maps of fractional anisotropy (FA) 
and mean diffusivity (MD) derived from its eigenvalues using DTIFIT. 

2.4 Creation of reference tracts 

We followed the standard reference tract construction steps for PNT in 
the TractoR software package v.2.1 for all reference datasets 
(http://www.tractor-mri.org.uk/reference-tracts#creating-custom-
reference-tracts;[13]). Briefly, for each tract of interest, a seed point 
was chosen in standard space and registered linearly to each of the 80 
training datasets. A cuboidal region of interest (ROI) was created in the 
7×7×7 voxel neighbourhood around each of these original seeds in na-
tive space. A probabilistic tract was then created for each voxel in the 
neighbourhood with FA>0.2, using BEDPOSTx/PROBTRACKx as the 
underlying tractography algorithm [14], with 2000 streamlines and a 
two-fibre model. All the tracts generated were reviewed visually, and 



for each dataset we manually chose the seed that produced the tract 
most closely representing the expected shape and length of the fascicu-
lus of interest. In the cases where there was more than one potential 
candidate available, we chose the one generated from the seed closest 
to the centre of the neighbourhood, i.e. closest to the seed point selected 
originally in standard space.  
We therefore obtained 80 representative training tracts for each tract of 
interest. Each of them was reduced to a single streamline by obtaining 
the spatial median [3], and then mapped into the standard MNI brain 
(with its corresponding seed point) by applying the reverse linear trans-
formation. A reference tract was then created by obtaining the median 
seed point and median streamline from the 80 training tracts, and fitting 
a B-spline to it, with a distance between knots of approximately 6 mm. 
A maximum bending angle restriction of 90o was also applied to avoid 
unrealistic ‘twists’ at the ends of the tracts, where uncertainty is larger. 

2.5 Creation of matching models 

The “matching model” describes typical deviations in shape and length 
that matching tract pathways make from the reference tract, using max-
imum likelihood estimation. The model for a tract of interest may be 
fitted in a supervised fashion by manually choosing a set of training 
tracts representing good matches to the reference [3], or following an 
unsupervised approach using an expectation-maximisation (EM) algo-
rithm which will train the model and select at the same time the best 
segmentations from each dataset [2]. 
With the centroid reference tract created from the training data as ex-
plained above, the whole set of 80 training tracts were used to fit a 
matching model in a supervised fashion [3].  
We then used an unsupervised approach in the 50 testing datasets 
(LBC1936), based on an EM algorithm, whereby the model was trained 
and applied iteratively using the same data [2]. Using this approach, a 
matching model was obtained from the testing data as well as the best 
candidate tract for each dataset. We therefore obtained two matching 
models for each tract of interest, one created from the 80 training da-
tasets (ages 25–64 years) and one created from the 50 testing datasets 
(age 71.8 ± 0.4 years). 



2.6 Testing of reference tracts and matching models 

The new reference tracts were used to segment the fasciculi of interest 
in the LBC1936 testing data with PNT by evaluating novel candidate 
tracts for plausibility against the model fitted to the training data and 
against the model created with the unsupervised approach in the own 
testing data. This allows us to test the influence of the matching model 
on the selection of candidate tracts in the testing data. 
The unsupervised fitting process was also repeated using the reference 
tracts previously created from an atlas [6, 15], which are currently pro-
vided with the TractoR package. This allows the new data-based refer-
ence tracts to be compared with the previous atlas-based reference 
tracts. 
We therefore obtained three segmentations for each fasciculus of inter-
est for each testing dataset (LBC1936): (a) using a supervised matching 
model from the training dataset and the data-based reference tract, (b) 
using an unsupervised matching model from the testing LBC1936 da-
taset and the data-based reference tract, and (c) using an unsupervised 
matching model from the testing LBC1936 dataset and the atlas-based 
reference tract. 
For all methods, an additional shape modelling-based approach was 
used to reject false positive streamlines from the final tracts [16]. The 
resulting segmented tracts were then visually assessed, blinded to the 
method used, and tracts were considered unacceptable if any significant 
portion of the tract (i.e. with high visitation count) ran in a direction 
different from that expected from anatomy, or if they were severely 
truncated or bent in an unrealistic angle.  
Tract-averaged FA and MD values were then calculated in tracts that 
passed this visual quality check, weighting the values in each voxel by 
the streamline visitation count. To compare the three segmentations, the 
proportions of visually plausible tracts were recorded and the coeffi-
cients of variation (CV) of the mean FA and MD values extracted from 
the resulting tracts calculated and compared. 
To obtain an impression of the relative importance of the reference 
tracts and the fitted model, the degree of agreement on the best-
matching candidate tract was assessed across the 50 LBC1936 testing 
datasets between the three methods 



3 Results 

3.1 Reference tracts 

The data-based reference tracts were created for 16 main brain white 
matter fasciculi: the genu and splenium of the corpus callosum, the an-
terior thalamic radiations (ATR), the arcuate (Arc), uncinate (Unc), and 
inferior longitudinal fasciculi (ILF), the frontal and ventral cingula 
(Cing), and the corticospinal tract (CST), bilaterally. Figure 1 shows a 
representation of all the reference tracts created from the training data 
as a projection in a plane. 
 

 
Fig. 1. 2D projections of the reference tracts created form the training data. From left to right 
and top to bottom: genu and splenium of the corpus callosum, left (L) and right (R) arcuate 
fasciculi, L and R anterior thalamic radiations, L and R inferior longitudinal fasciculi, L and R 
frontal cingula, L and R corticospinal tracts, L and R ventral cingula, and L and R uncinate 
fasciculi. Note: images are in radiological convention (left is shown on the right) 

3.2 Testing of reference tracts and matching models 

Visual assessments. The use of the data-based reference tracts im-
proved the number of visually acceptable tracts when compared with 



the same segmentations created from the previous atlas-based reference 
tracts. Table 1 shows the percentage of successful segmentations for 
each white matter tract using each method.  
When comparing tracts created with the same testing data model, the 
data-based reference tracts improved the consistency of the segmenta-
tions, with >92% of successful segmentations for all tracts. By contrast, 
atlas-based reference tracts had a lower average performance, particu-
larly due to the poor performance segmenting the ATR, bilaterally, 
where only 32 and 76% of the cases could be segmented successfully.  
When comparing the two models, both perform well, with an average 
of >98% visually plausible tracts, suggesting that a model can be 
trained in a separate dataset and still successfully segment the tracts in 
the testing (LBC1936) data. 

Table 1. Proportion of segmented tracts visually acceptable when using two different matching 
models and each set of reference tracts as priors.  

 Reference tracts Data-based Atlas-based 
Model trained on  Training data Testing data 
Genu 100.0% 100.0% 96.0% 
Splenium 98.0% 96.0% 98.0% 
LArc 100.0% 100.0% 98.0% 
RArc 96.0% 96.0% 94.0% 
LATR 100.0% 100.0% 32.0% 
RATR 96.0% 100.0% 76.0% 
LCing 98.0% 98.0% 100.0% 
RCing 98.0% 92.0% 98.0% 
LCing_ventral 98.0% 100.0% 98.0% 
RCing_ventral 94.0% 98.0% 100.0% 
LILF 100.0% 100.0% 100.0% 
RILF 100.0% 100.0% 100.0% 
LUnc 96.0% 92.0% 88.0% 
RUnc 100.0% 100.0% 100.0% 
LCST 100.0% 98.0% 100.0% 
RCST 100.0% 100.0% 100.0% 
Mean 98.3% 98.1% 92.4% 

 
Figure 2 shows the group maps created by overlaying the segmented 
tracts from the 50 older age volunteer LBC1936 testing data sets into 
the standard brain as maximum intensity projections. These images 
show that the segmentations obtained from the two sets of reference 
tracts are similar, except for the left and right ATR, where many of the 
segmentations using the atlas-based reference followed the wrong path, 
thereby failing the visual check. Some small differences are, however, 
obvious in other tracts, specifically regarding their lengths. In particu-
lar, the segmentations of the corpus callosum genu, the arcuate fasciculi 



and the ventral cingula were longer when using the new data-based ref-
erence tracts, with more of the tract included in the segmentation.   
The group maps from tracts generated with each training model showed 
that the choice of training model had a modest effect on the segmented 
tracts. 

 
Fig. 2. Group maps projections for the 16 tracts of interest segmented using the atlas-based 
(left) and data-based (right) reference tracts. Top row used a matching model trained in the 
testing data, and the bottom row used a model trained in the training data.  Colour scale repre-
sents the voxel visitation frequency, from 1 (dark blue) to 50 (yellow). Maps are projected into 
the plane of the voxel with maximum visitation value. 

FA and MD variability. Table 2 shows the mean values and CV of FA 
and MD, measured along the tracts extracted by both methods. One-
way analysis of variance (ANOVA) tests, corrected for multiple com-
parisons, showed that the parameters measured in tracts generated by 



each method were generally not significantly different. Only the corpus 
callosum splenium, the RATR and RCST produced significantly differ-
ent mean parameters. Without multiple comparison correction, genu 
(FA), LCing (FA) and LCST (FA and MD) also became significant. 
However, for both the FA and MD, the variation across the 50 
LBC1936 datasets is lower for most tracts when generated with the da-
ta-based reference tracts.  

Table 2. Averaged values of fractional anisotropy (FA) and mean diffusivity (MD) measured 
along the tracts segmented with two different matching models, and atlas-based or data-based 
reference tracts as priors in 50 older age volunteers. The coefficients of variation (CV) for each 
parameter are shown in the shaded columns. Bold type indicates that the mean parameters were 
significantly different between the tracts created with each method (One-way ANOVA after 
Bonferroni-Holm adjustment for multiple comparisons across tracts). 

 
 

Comparison between fitted models. The source of training data used 
to fit the model appeared to be less influential than the choice of refer-
ence tract. Models trained with the separate training data or with the 
testing data (in the unsupervised framework), but with the reference 
tracts in common, resulted in agreement on the best candidate tract in 
an average of 39% of subjects. By contrast, the two models fitted in an 

Reference

Model training

CV CV CV CV CV CV

Genu 0.41 (0.05) 0.11 0.39 (0.05) 0.12 0.39 (0.05) 0.12 775.75 (65.67) 0.08 799.20 (75.46) 0.09 799.85 (74.59) 0.09

Splenium 0.45 (0.09) 0.20 0.52 (0.06) 0.12 0.51 (0.08) 0.15 1117.26 (220.22) 0.20 807.61 (108.59) 0.13 837.77 (162.71) 0.19

LArc 0.46 (0.04) 0.10 0.45 (0.04) 0.09 0.45 (0.04) 0.10 662.74 (48.87) 0.07 661.30 (49.26) 0.07 659.26 (49.38) 0.07

RArc 0.43 (0.05) 0.12 0.42 (0.04) 0.10 0.43 (0.04) 0.09 648.12 (54.33) 0.08 647.77 (51.29) 0.08 644.79 (45.56) 0.07

LATR 0.34 (0.04) 0.13 0.34 (0.03) 0.10 0.34 (0.03) 0.10 763.57 (75.81) 0.10 755.39 (60.94) 0.08 746.41 (60.30) 0.08

RATR 0.35 (0.03) 0.10 0.36 (0.03) 0.08 0.33 (0.04) 0.11 745.26 (54.56) 0.07 704.24 (49.38) 0.07 765.01 (73.94) 0.10

LCing 0.45 (0.05) 0.12 0.46 (0.06) 0.12 0.46 (0.06) 0.12 647.29 (51.00) 0.08 638.39 (45.15) 0.07 640.95 (47.46) 0.07

RCing 0.42 (0.06) 0.13 0.43 (0.04) 0.10 0.42 (0.05) 0.11 620.61 (36.12) 0.06 625.92 (36.13) 0.06 631.26 (34.45) 0.05

LCing_ventral 0.32 (0.06) 0.19 0.29 (0.04) 0.12 0.29 (0.04) 0.12 754.90 (154.86) 0.21 728.86 (62.50) 0.09 733.07 (69.52) 0.09

RCing_ventral 0.30 (0.06) 0.20 0.30 (0.04) 0.15 0.29 (0.04) 0.14 760.68 (95.07) 0.12 749.89 (78.93) 0.11 748.73 (88.67) 0.12

LILF 0.42 (0.05) 0.12 0.41 (0.05) 0.12 0.40 (0.05) 0.12 740.50 (75.45) 0.10 752.41 (67.06) 0.09 745.86 (61.13) 0.08

RILF 0.39 (0.05) 0.14 0.40 (0.04) 0.11 0.38 (0.05) 0.12 788.00 (142.54) 0.18 750.31 (83.70) 0.11 755.39 (87.47) 0.12

LUnc 0.34 (0.04) 0.10 0.33 (0.03) 0.10 0.34 (0.04) 0.11 769.65 (55.63) 0.07 769.08 (59.53) 0.08 764.88 (60.65) 0.08

RUnc 0.33 (0.03) 0.10 0.33 (0.03) 0.10 0.33 (0.04) 0.11 756.22 (41.27) 0.05 758.75 (41.27) 0.05 754.75 (41.77) 0.06

LCST 0.48 (0.03) 0.07 0.46 (0.04) 0.08 0.46 (0.04) 0.08 655.47 (36.72) 0.06 672.26 (37.18) 0.06 675.52 (38.65) 0.06

RCST 0.49 (0.03) 0.07 0.49 (0.03) 0.07 0.50 (0.04) 0.07 653.82 (32.72) 0.05 676.03 (32.36) 0.05 676.37 (31.99) 0.05

Mean 0.40 (0.06) 0.12 0.40 (0.07) 0.10 0.40 (0.07) 0.11 741.24 (115.50) 0.10 718.59 (58.11) 0.08 723.74 (61.23) 0.09

Atlas-based

Testing data 

Data-based Data-based

Testing data Training data 

Mean (sd)

MD (10 -6 mm 2 /s)

Mean (sd) Mean (sd) Mean (sd) Mean (sd)

Training data 

Mean (sd)

FA

Atlas-based



unsupervised fashion on the same testing data (LBC1936), but with 
different reference tracts, agreed only 9% of the time. 

4 Discussion  

The reference tract represents the “matching” target for PNT automatic 
segmentation, and it is therefore crucial that this prior epitomises the 
topological characteristics of the fasciculus of interest correctly. Using 
a large group of healthy volunteers, with a wide age range, we were 
able to capture the variability in tract topology better. Our results 
showed that the results from PNT can be improved, even when the test-
ing data corresponds to an age group outside the age range used during 
training to generate the reference tracts or the matching models (72 vs 
25–64 years old). We also demonstrated that the source of training data 
used to fit the model was less influential than the choice of reference 
tract, and that matching models previously fitted in training data can be 
used to apply PNT in separate testing datasets. This enables the possi-
bility of using PNT in small samples of testing data, where the number 
of datasets might not be large enough for fitting the matching model in 
an unsupervised fashion. 
 The large percentage of successful segmentations obtained in the older 
population (>98%) when using the new reference tracts suggests that 
these can be used as priors in different populations, and not just in a 
population matching the training data characteristics. Although the im-
provement is significant, is it still not sufficient to make manual check-
ing of the segmented tracts entirely unnecessary, but this is true for 
most automated methods. Further tests would also be required to inves-
tigate whether these reference tracts would still be good priors to per-
form PNT segmentation in diseased populations with potentially large 
changes in brain topology, such as in the presence of tumours or stroke, 
but preliminary work suggests that the general approach is robust to 
even quite substantial mass effects [17]. 
The most obvious improvement with the new reference tracts is the 
high success rate obtained for the ATR, indicating that the prior for this 
tract generated from real data is a much better representation of the 
ATR topology. Another improvement is the extraction of longer seg-
ments of some of the tracts of interest, such as the genu of the corpus 
callosum, the arcuate and the ventral cingulum, which arises due to the 
greater difficulty of inferring accurate pathways near the ends of tracts 



when using an atlas as the reference, leading to a shorter reference tract. 
The segmentation of a larger section of the genu projections into the 
frontal cortex (where FA tends to be lower than in the centre of the 
tract) could explain the slightly lower mean values of FA obtained for 
this tract when using the new reference tracts. There was also a very 
subtle shift in the overall position of the splenium of the corpus callo-
sum, with the segmentations for this tract obtained with the atlas-based 
reference tract being generally closer to the boundary with the ventri-
cles, while the data-based reference producing segmentations within the 
middle of this fasciculus. This is also reflected in the higher MD and 
lower FA of the atlas-based splenium, suggesting more partial volume 
averaging with cerebrospinal fluid from the ventricles. 
There could be two main reasons for the differences in parameters 
measured with each method. Firstly, the atlas used to generate the pre-
vious references tracts was obtained using data from subjects with an 
average age of 29 ± 7.9 years [6], while the training data for the new 
priors had a wider age range of 25–65 years. The new reference tracts 
will therefore represent better the characteristics of the white matter in 
older age, and particularly the changes due to ageing such as atrophy 
and enlarged ventricles. This is reflected in the better segmentations, 
and in the change in the parameters measured, in the tracts running 
closer to the ventricles, such as the ATR, the CST, and the genu and 
splenium of the corpus callosum. Secondly, the native-space tractog-
raphy data used for generating the reference tracts here is a much richer 
dataset than the subject-averaged tract probability maps that constitute 
the atlas. 
The CVs in the parameters measured in the segmentations created from 
the new set of reference tracts are lower than those created from the 
atlas-based reference tracts, particularly for the splenium and the ven-
tral Cing. This suggests a lower variability introduced by the tract seg-
mentation method, which should facilitate detection of true biological 
differences and avoid spurious findings. 
In summary, we have created a new set of data-based reference tracts to 
be used as priors for PNT, which improved the segmentations of 16 
tracts of interest. We have also demonstrated that the matching model 
could be fitted in separate training data, which will make the use of 
PNT in small testing datasets newly practicable. 
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