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Purpose: Diffusion MRI has recently been used with detailed models to probe tissue microstructure. Much of
this work has been performed ex vivo with powerful scanner hardware, to gain sensitivity to parameters such
as axon radius. By contrast, performing microstructure imaging on clinical scanners is extremely challenging.
Methods: We use an optimised dual spin-echo diffusion protocol, and a Bayesian fitting approach, to obtain
reproducible contrast (histogram overlap of up to 92%) in estimated maps of axon radius index in healthy
adults at a modest, widely-available gradient strength (35 mT m−1). A key innovation is the use of influential
priors.
Results: We demonstrate that our priors can improve precision in axon radius estimates—a sevenfold reduc-
tion in voxelwise coefficient of variation in vivo—without significant bias. Our results may reflect true axon
radius differences between white matter regions, but this interpretation should be treated with caution due to
the complexity of the tissue relative to our model.
Conclusions: Some sensitivity to relatively large axons (3–15 µm) may be available at clinical field and
gradient strengths. Future applications at higher gradient strength will benefit from the favourable eddy current
properties of the dual spin-echo sequence, and greater precision available with suitable priors.

Introduction

Diffusion-weighted magnetic resonance imaging
(dMRI) uses the random self-diffusion of water
molecules as the basis for an endogenous contrast in
biological tissues (Le Bihan, 2003). A greater diffu-
sivity is associated with greater attenuation in the MR
signal due to the dispersion of “labelled” molecules dur-
ing the course of an imaging experiment. Diffusion
tensor imaging takes advantage of the orientational de-
pendence of diffusivity in tissue to infer the arrangement
of structures such as white matter tracts (Basser et al.,
1994), and varying the time during which molecules
are allowed to diffuse allows further properties of tissue
architecture to be inferred (Callaghan, 1991).

A recent trend has been to use dMRI in combina-
tion with detailed models of tissue microstructure to try
to estimate characteristics which are generally more as-
sociated with invasive histology than clinical imaging,
such as axon radius. The tissue models are typically built
up from simple geometric shapes such as cylinders and

spheres, but despite their simplicity they may be able
to provide more direct tissue microstructure parameters
than can be obtained from traditional dMRI analysis
(Alexander et al., 2010; Assaf & Basser, 2005; Stanisz
et al., 1997). These model parameters may in turn of-
fer greater interpretability and sensitivity as biomarkers.
In addition to the pioneering work by Stanisz et al., the
“AxCaliber” technique has demonstrated the feasibility
of recovering axon radius information from MR images
of nervous tissue (Assaf et al., 2008). Subsequently,
the “ActiveAx” approach has developed the area towards
feasibility in vivo by using orientationally invariant pro-
tocols, to allow axon radii to be estimated throughout the
brain, and optimised pulses sequences, to make acquisi-
tion times feasible (Alexander et al., 2010). The strength
of the magnetic gradients available has been shown to be
a key limiting factor for these applications (Dyrby et al.,
2013; Huang et al., 2015), and the lack of strong gradi-
ents at most sites is a major barrier to their widespread
uptake.

The best choice of diffusion-weighted pulse se-



quence for these applications is the focus of ongoing
discussion in the literature. In addition to the original
pulsed-gradient spin-echo (PGSE) sequence developed
by Stejskal & Tanner (1965), other diffusion-weighted
sequences have been suggested as candidates for more
effective tissue microstructure imaging. For example,
oscillating gradient sequences allow very short diffusion
times to be achieved, and therefore may have better sen-
sitivity to small axon radii (Li et al., 2014; Siow et al.,
2013). Multiple wave-vector protocols can help to dis-
tinguish between signals from compartments with dif-
ferent shapes (Shemesh & Cohen, 2011), and several
authors have proposed that they may provide additional
sensitivity, beyond that of PGSE, for axon radius estima-
tion (Koch & Finsterbusch, 2008; Lawrenz & Finster-
busch, 2010; Shemesh et al., 2009). One can even use
a generalised gradient waveform, enforcing only realis-
tic slew rates and balance to ensure that refocussing and
a main echo occur (Drobnjak et al., 2010; Siow et al.,
2012).

For routine diffusion-weighted imaging on clinical
scanners, the dual spin-echo sequence (DSE; Feinberg &
Jakab, 1990; Reese et al., 2003) is very popular because
it reduces eddy currents at the time of readout, and hence
the image distortions caused by them. It differs from the
standard Stejskal–Tanner sequence in that refocussing is
applied twice, with four diffusion-sensitising gradients
appearing around the refocussing pulses (see Fig. 1). It
may offer additional benefits for microstructural imag-
ing in terms of sensitivity, due to its allowance for gra-
dient pulses placed next to each other, which produces
relatively short effective diffusion times. (With PGSE
on clinical hardware, by contrast, a lower bound is im-
posed by the time required for the radio-frequency refo-
cussing pulse.) The trade-off is that a longer echo time
is needed for DSE, reducing the available signal. We
have previously derived an expression for the signal ex-
pected from this sequence within impermeable cylinders
(Clayden et al., 2009), using the Gaussian phase distri-
bution approximation (Price, 1997). We further adapted
the experimental design optimisation from Alexander
(2008) for the DSE sequence using this signal model,
and demonstrated the sequence’s potential advantages
for estimating small axon radii, in particular, using sim-
ulations (Clayden et al., 2009).

In this study our aim is to investigate whether mean-
ingful axon radius information can be obtained in prac-
tice using standard scanner hardware and a widely-
available pulse sequence. Specifically, we apply an opti-
mised DSE sequence on a standard 3 T clinical scanner,
using a maximum gradient strength of 35 mT m−1. We
consider the corpus callosum in the human brain, where
the distribution of axon radii is well characterised by
post-mortem histology (Aboitiz et al., 1992). This struc-
ture has been well studied in the broader imaging liter-
ature, since damage to it has been shown to have a role
in a number of disease processes. However, microstruc-

tural measurements at the modest gradient strength ap-
plied here are sensitive to radii only at the very upper
limit of those observed in human callosal tissue. To im-
prove precision we use a standard model together with
a new parameter estimation algorithm that incorporates
prior information about plausible radii. We use simula-
tions to demonstrate that the algorithm provides contrast
between large and small radii, without substantial bias,
under idealised conditions. In brain data acquired from
adult volunteers, axon radius index maps consistently in-
dicate the presence of large axons in the same regions
suggested by histology, in particular in the anterior mid-
body of the corpus callosum.

Methods
We begin by outlining our signal model, and the pro-
cesses we applied for optimising the DSE sequence, ac-
quiring data and fitting tissue model parameters.

Signal model
The diffusion-weighted signal in white matter, S , is
modelled as a weighted sum of signal contributions from
three compartments: an isotropic compartment repre-
senting cerebrospinal fluid contamination, a restricted
“intracellular” compartment, and a hindered “extracellu-
lar” compartment (cf. Alexander et al., 2010; Barazany
et al., 2009). We denote the isotropic volume fraction
with fi and the restricted volume fraction with fr, sub-
ject to 0 ≤ fi + fr ≤ 1. Then,

S (Θ, fi, fr)
S 0

= fiS i(Θ)+ frS r(Θ)+(1− fi− fr) S h(Θ) , (1)

where S i, S r and S h are the signals from the isotropic,
restricted and hindered compartments respectively, S 0 is
the signal without diffusion weighting, and Θ is a set of
additional parameters. The isotropic signal component is
a simple function of the standard diffusion b-value and
the diffusivity, Di, of free water, viz. S i = exp(−bDi).

The white matter tissue of interest is modelled as a
coherent bundle of parallel, impermeable, hollow cylin-
ders of fixed radius, R. The extracellular, hindered com-
partment is assumed to be homogeneous, and diffusion
is assumed to follow a cylindrically symmetric 3D Gaus-
sian distribution, viz.

S h(Θ) = exp
(
−b

(
cos2 α (D‖ − D⊥) + D⊥

))
, (2)

where α is the angle between the gradient direction and
the orientation of the white matter bundle, D‖ is the dif-
fusivity parallel to the cylinders, and D⊥ is the diffusivity
perpendicular to them.

Following Neuman (1974) and van Gelderen et al.
(1994), we have previously derived an expression for
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Figure 1: Pulse timing diagram for the standard dual spin-echo sequence. Only RF pulses and the four diffusion-weighting gra-
dient pulses are shown for simplicity. Time zero is the earliest time at which a diffusion gradient can first be applied, allowing
for the time required for the 90◦ excitation RF pulse and other preparatory gradient pulses.

0 20 40 60 80 100

time, ms

0 20 40 60 80 100

time, ms

0 20 40 60 80 100

time, ms

0 20 40 60 80 100

time, ms

0 20 40 60 80 100

time, ms

Figure 2: Optimised series of five pulse arrangements, with b-values of 0, 422, 620, 422 and 2378 s mm−2. Note that all four
standard pulses do not actually exist in any one arrangement, but all are properly balanced. The second and fourth arrangements
are in fact identical.
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Pulse arrangement
1 2 3 4 5

Onset 1 0.00 0.00 0.00
Length 1 7.34 7.34 13.01

Onset 2 24.47 20.60
Length 2 21.97 6.83

Onset 3 46.45
Length 3 21.97

Onset 4 91.76 91.76 79.86
Length 4 7.34 7.34 19.84

b-value, s mm−2 0 422 620 422 2378

Table 1: Pulse timings, in milliseconds, as
implemented in the final protocol shown in
Fig. 2. Time zero is the earliest time at which
a diffusion gradient can first be applied, al-
lowing for the time required for the 90◦ ex-
citation RF pulse and other preparatory gra-
dient pulses. Missing values correspond to
omitted pulses. Echo time is 118.54 ms in all
five pulse arrangements. The time required
for a 90◦ RF pulse was 2.56 ms, and 7.56 ms
was required for a 180◦ pulse and its associ-
ated crusher gradients.

the restricted diffusion signal within cylinders for the
DSE sequence (Clayden et al., 2009), using the Gaussian
phase distribution approximation (Price, 1997). That re-
sult is used here for S r, unmodified. It depends on the
cylinder radius, R; the intracellular diffusivity, which we
take as equal to D‖; and the orientation of the cylinder,
which we parameterise using the spherical coordinate
angles, θ and φ.

The full parameter set is therefore Φ =

{S 0, fi, fr,Di,D‖,D⊥,R, θ, φ}.
We note that this model does not take into account

differences in T1 or T2 relaxation times in the different
compartments, whereas in practice such differences will
exist. However, the isotropic volume fraction is expected
to be very small in most voxels, and so the influence of
this limitation on parameter estimates will be minimal.
Moreover, fi and Di are treated as nuisance parameters
of little interest in this study.

Sequence optimisation

The experiment design optimisation framework devel-
oped by Alexander (2008) was used to optimise a DSE
imaging protocol for estimating the tissue parameters of
interest. This framework aims to identify combinations
of pulse arrangements, within the constraints imposed by
the sequence and the performance of the scanner, which
will maximise the expected precision of the tissue pa-
rameters, using the formalism of the Cramér–Rao lower
bound.

The generative parameters used for the optimisation
were: S 0 = 1, fi = 0, fr = 0.7, Di = 3 × 10−9 m2 s−1,
D‖ = 1.7 × 10−9 m2 s−1 and D⊥ = 1.2 × 10−9 m2 s−1,
following Clayden et al. (2009). Generative radii were
R ∈ {5, 10, 20} µm, as in Alexander et al. (2010), with
the optimisation seeking a combination of pulse arrange-
ments that jointly minimise average expected variance
in the model parameters across these three values. (Al-
though large relative to the expected radii in most tissue,
they represent the domain where we expect some sen-
sitivity at low gradient strength.) No assumptions were
made about the orientations of the axon bundles within

the voxel, and gradient directions for each arrangement
were therefore uniformly spread over the sphere. For the
purposes of estimating the noise properties of the proto-
col, the spin–spin relaxation constant, T2, was taken to
be 0.07 s. The number of separate diffusion-weighted
pulse arrangements was fixed to four, and the number of
gradient directions per arrangement was fixed to 90. A
b = 0 arrangement was also included.

Eddy currents with a time constant of 0.7/T̃ were
nulled, with T̃ the maximal sum of all diffusion-
encoding gradient pulse lengths across the five arrange-
ments, as proposed by Heid (2000). Off-design eddy
current effects are also reduced by this process, which
removes one degree of freedom from the optimisation.

The optimised pulse arrangements are shown in Fig.
2, and precise gradient timings are given in Table 1.
The diffusion b-values corresponding to the five pulse
arrangements were 0, 422, 620, 422 and 2378 s mm−2.
Gradient amplitude in each case, except where b = 0,
was the maximum allowed, at 35 mT m−1. The echo
time was included in the optimisation but not allowed to
vary across arrangements; its final value was 118.54 ms.
In general, the DSE sequence has no specific diffusion
time associated with it, but for the simple arrangements
in Fig. 2, we can compute an effective diffusion time in
a similar way to the PGSE sequence. On this basis, ar-
rangements 2, 4 and 5 have long diffusion times (80–
92 ms), while arrangement 3 has a short diffusion time
(22 ms).

Synthetic data

Synthetic data were obtained using Monte Carlo simula-
tion, as implemented in Camino (Cook et al., 2006; Hall
& Alexander, 2009). The simulation tracks the phase of
10,000 spins over 1000 time steps during the optimised
pulse arrangement, to calculate the final signal. The sim-
ulated tissue geometry consisted of hexagonally packed
impermeable cylinders of fixed radius, with a universal
diffusivity of 1.7 × 10−9 m2 s−1. Run time was approx-
imately five minutes on a standard iMac desktop com-
puter.
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The simulation was carried out for axon radii of 1,
3, 5, 10, 15 and 20 µm, with the centre-to-centre cylin-
der separation fixed at 2.3 times the radius, to main-
tain an intracellular volume fraction of 0.69 in all cases.
Ten different axon orientations were used for each ra-
dius, equally distributed on the sphere. Rician noise was
added to the simulated signals, based on an SNR of 19
at b = 0 with the optimised echo time, matching the es-
timated noise characteristics of the scanner.

In addition, synthetic substrates containing a range
of axon radii, distributed according to gamma distribu-
tions with means of 3, 5 and 8 µm and variances of
2.5 µm were also generated and fitted using our model.
In this case cylinders were placed at random, but intra-
cellular volume fractions were always between 0.65 and
0.70. This experiment was intended to test the influence
of a particular type of mismatch between the data and
the model.

Finally, to investigate axon radius estimation at dif-
ferent gradient strengths, the protocol was reoptimised
using a maximum gradient strength of 300 mT m−1, in
line with the top end of what is currently available on
human scanners (McNab et al., 2013). In this case syn-
thetic data were generated using a single axon radius of
3 µm.

Data acquisition and preprocessing
Although the gradient strength capabilities of the scan-
ner, as well as the time needed for RF pulses, prepa-
ration pulses and readout are taken into account by the
optimisation, it does not incorporate slew rate informa-
tion. It was therefore necessary to remove some very
short pulses from the optimised arrangements to make
them realisable in practice. The other pulse lengths were
adjusted as necessary to restore balance, and the pulse
diagrams in Fig. 2 incorporate these edits.

Three individuals—a 23 year-old female, a 32 year-
old male, and a 31 year-old female—were each scanned
on two separate occasions on a Siemens Trio 3 T clinical
scanner, using a body transmit coil and vendor-supplied
32 channel receive-only head coil, as well as a standard
gradient coil set (Gmax = 35 mT m−1). The optimised
protocol was applied, consisting of ten b = 0 images fol-
lowed by sets of 90 identical diffusion sensitising direc-
tions for each of pulse arrangements 2–5, shown in Fig.
2. Data were acquired from a series of contiguous axial
slices covering the corpus callosum, at 2.3 mm isotropic
resolution. Scan time was approximately one hour, but
cardiac pulse triggering was used, and so the exact time
depended on each subject’s heart rate. Three slices were
imaged per heartbeat.

DICOM files were converted to NIfTI format using
the TractoR software package (Clayden et al., 2011).
The first b = 0 volume was treated as a dummy and
removed from each data set. Due to the favourable eddy
current properties of the DSE sequence, and a high de-

gree of cooperation from scan subjects, the image vol-
umes were observed to be well aligned. Therefore no
coregistration was performed, to avoid introducing spu-
rious motion and blurring in the data. Diffusion tensors
were fitted to the data using ordinary least squares and
a mask of the corpus callosum was drawn by hand by a
single observer (JDC) on one midsagittal slice in each
data set, using the fractional anisotropy map as a guide.
Parameter fits were then performed within this mask.

Parameter fitting
Equation (1) gives an expression for the expected signal
from our simple tissue substrate given known tissue pa-
rameters. Given a set of measured signal values, we need
to solve the inverse problem, finding the set of parame-
ters, Φ̂, which best explain the measurements. Since we
have some expectations regarding the regime of values
for many of the parameters, we would also like to make
use of that information. We therefore take a Bayesian
approach, estimating a posterior distribution over the pa-
rameters using Markov chain Monte Carlo (MCMC).

We assume that measurements of the signal, x(k), are
drawn from a Rician distribution around the modelled
value from Eq. (1), S (k), viz.

P(x(k) |Φ, σ) =
x(k)

σ2 exp

−(x 2
(k) + S 2

(k))

2σ2

 I0

(
x(k)S (k)

σ2

)
,

(3)
where σ controls the noise level. I0(·) is the modified
Bessel function of the first kind, order zero. If the noise
associated with each measurement can be considered to
be independent and identically distributed, then we can
write down the joint distribution of the full set of mea-
surements, X = (x(k)), as

P(X |Φ, σ) =
∏

k

P(x(k) |Φ, σ) . (4)

Bayes’ rule then allows us to calculate a posterior distri-
bution over the parameters as

P(Φ, σ |X) =
P(X |Φ, σ)P(Φ)P(σ)∫∫

P(X |Φ, σ)P(Φ)P(σ) dΦ dσ
, (5)

where P(Φ) represents the prior information available re-
garding Φ, and P(σ) likewise for σ. (We assume prior
independence of Φ and σ.)

At this point we could simply choose “uninforma-
tive” priors for each parameter, ensuring only that phys-
ical requirements such as positivity are met by the es-
timates. However, estimating our tissue model param-
eters using data from a scanner with clinical gradient
strengths is expected to yield relatively low precision,
and by choosing more influential priors we regularise the
problem. To this end, the following informative priors
were used across all model fits:
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fi ∼ Beta(1.2, 1.2) ,
fr

1 − fi
∼ Beta(5, 5) ,

D‖ ∼ Log-N(−20.69, 1) ,
D⊥ ∼ Log-N(−21.04, 1) ,

R ∼ Gamma(3.562, 1.404 × 10−6) . (6)

These values are based on SI length and time units, i.e.
metres and seconds. We use fr/(1 − fi) rather than
fr directly to give the parameter fixed bounds of 0 to
1. The two volume fractions have nonuniform distribu-
tions to regularise the posterior away from the extremes.
The log-normal distribution has been used before as a
prior for diffusivity parameters, for example by Ander-
sson (2008), and the means of the distributions given
above correspond to the values used for optimisation,
i.e. 1.7 × 10−9 m2 s−1 for D‖ and 1.2 × 10−9 m2 s−1 for
D⊥. The gamma distribution—parameterised here using
shape and scale parameters—has likewise been used to
represent distributions over axon radii (e.g. Assaf et al.,
2008), and our values are chosen to give the distribution
a mean of 5 µm, approximately 4–5 times the mean ob-
served across the corpus callosum in histological stud-
ies such as Aboitiz et al. (1992), in line with previous
findings of overestimation of the histological mean axon
radius by the estimated axon radius index from dMRI
(Alexander et al., 2010; Dyrby et al., 2013).

Despite our use of informative prior distributions for
the parameters described above, we do not explicitly im-
pose any distributional assumptions on the posterior dis-
tributions. These are represented by the empirical dis-
tributions of the values sampled from the MCMC algo-
rithm.

A series of samples were drawn from the poste-
rior distribution, Eq. (5), using a blocked Metropolis–
Hastings algorithm, with a tuned multivariate Gaussian
proposal distribution for each block. The parameter
blocks in this case were (S 0), ( fi, fr), (D‖,D⊥,R), (θ, φ)
and (σ). The isotropic diffusivity, Di, was fixed at
3.0 × 10−9 m2 s−1 to represent free water, and not sam-
pled. For the synthetic data only, fi was also fixed at
zero.

A least-squares tensor fit was first performed for
each voxel, yielding principal diffusivities λ1 ≥ λ2 ≥ λ3.
MCMC chains were then initialised according to

f̃i =
λ2

3

λ1λ2
f̃r = 0.7 (1 − f̃i)

D̃‖ = λ1 D̃⊥ =
λ2 + λ3

2
R̃ = 5 µm . (7)

An iterative process was then used to tune the co-
variance matrix for each proposal distribution, bringing

each block acceptance rate close to the theoretical opti-
mum of around 23% so that the parameter space would
be explored efficiently (cf. Roberts et al., 1997). After-
wards, the chain was run for a burn-in period of 50,000
steps, followed by a sampling phase gathering 50 sam-
ples of each parameter, with each sample separated by
100 steps. In practice, samples were actually of the logit
or logarithm of parameters with bounds, to ensure that
the sample space was infinite.

The algorithm was implemented on the TractoR plat-
form in R and C++, using the “Rcpp” and “RcppAr-
madillo” libraries for the R statistical language and envi-
ronment (Clayden et al., 2011; Eddelbuettel & François,
2011; Eddelbuettel & Sanderson, 2014; R Core Team,
2014).

The consistency of the MCMC over multiple chains
was assessed, and samples were checked visually in sev-
eral voxels for evidence of good mixing and convergence
to the stationary posterior distribution.

Histogram similarity
The histogram intersection measure introduced by
Swain & Ballard (1991) was used to quantify the sim-
ilarity of axon radius distributions across scans. This
normalised measure is based on the observed probabil-
ity density in each bin, j, of the two histograms, h1 and
h2. Specifically,

H =

∑
j min

{
h j

1, h
j
2

}
∑

j h j
1

. (8)

Intuitively, H represents the proportion of the histogram
which is common to both data sets, and it therefore has
a range of 0 to 1. Since the denominator will evaluate to
the inverse of the bin width, this measure is symmetric
as long as the bins are the same in each histogram.

Results
Figure 3 shows histograms of sampled axon radii from
the synthetic data. At the low end of the scale, precision
is too poor to distinguish radii of 1 and 3 µm (H = 0.84,
using bins of width 0.25 µm); and at the high end, the in-
fluence of the prior forces underestimation of very large
radii of above 15 µm. However, radii of 3, 5, 10 and
15 µm are clearly discriminable, with sample medians
closely approximating the true, generative radius in each
of these cases (H = 0.41 between 3 and 5 µm; H = 0.12
between 5 and 10 µm; H = 0.44 between 10 and 15 µm).
When the synthetic substrate contains a gamma distribu-
tion of radii, as shown in the bottom part of the figure,
there is a bias in the posterior distributions, but it re-
mains possible to distinguish larger radii from smaller
ones. Fig. 4 demonstrates that much greater precision
is available at 3 µm when gradient strengths increase to
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Figure 3: Histograms of sampled posterior
axon radius values from our synthetic data,
using a single fixed cylinder radius (top) or a
gamma distribution of radii (bottom). For the
former, samples cover ten axon orientations
at each radius. For the latter, the generative
distributions (shown) have means of 3, 5 and
8 µm, and variances of 2.5 µm.
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Figure 4: Histograms of sampled poste-
rior axon radius from synthetic data, based
on scan protocols optimised for maximum
gradient strengths of 35 mT m−1 (top) and
300 mT m−1 (bottom). In each case, sam-
ples are shown from fits performed both with
(blue) and without (red) applying the gamma
prior distribution on R. The true generative
axon radius was 3 µm, and samples cover ten
axon orientations. Only samples below 8 µm
are shown. Note that the y-axis in the upper
plot is broken to accommodate a very tall bar.
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Figure 5: Maps of axon radius index, estimated as the median of the posterior sampled values in each voxel. An area of rela-
tively large axons is consistently observed in the anterior mid-body of the corpus callosum (green arrows). Subjects are in rows,
and scans in columns. The underlying greyscale map is fractional anisotropy, and the colour scale is the same in all subfigures.

300 mT m−1, but it improves still further when prior in-
formation is used.

Maps of axon radius index, the median sampled
value of R in each voxel, are shown for in vivo data in
Fig. 5. A fair degree of consistency was observed, both
between the first and second scans for each subject, and
between subjects. The maximal radius index was gen-
erally observed in the anterior mid-body region and, in
subjects 2 and 3, the splenium. Histograms across the
whole corpus callosum showed substantial overlap be-
tween each pair of scans (H = 0.92 for subject 1, 0.89
for subject 2, and 0.76 for subject 3, using bins of width
0.5 µm), and a similar level of overlap between subjects
(H between 0.78 and 0.91).

To further examine variation along the corpus callo-
sum, we divided each subject’s segmented region of in-
terest into five subregions, separated by equally spaced
coronal planes, similar to Aboitiz et al. (1992). Box-
plots of sampled axon radius index in each subregion for
each subject are shown in Fig. 6. The anterior mid-body
subregion (shown in blue) has the highest radii on av-
erage in every subject, although the degree of variation
across subregions is small in subject 1. The scan–rescan
relative absolute difference, viz. |a − b|/(a + b), in the
median axon radius on a subregion-by-subregion basis
varied from 11% (posterior mid-body) to 24% (anterior
mid-body).

The model was a good fit to the acquired data,
in terms of the proportion of total signal variance ex-

plained. Voxelwise coefficients of determination (R2) av-
eraged between 0.84 and 0.93 for each of the six scans.

To illustrate the influence of the priors used in our
fit, Eq. (6), we show in Fig. 7 all of the sampled values
for the axon radius parameter for one scan, both with
and without the prior in use. (Priors on all other pa-
rameters were retained in the latter case.) We can ob-
serve that the prior is strongly influential, since there is
an extremely wide range of sampled radii in its absence.
The influence of the data, encapsulated in the Bayesian
likelihood term, may therefore be considered to be rela-
tively weak, which is to be expected at clinical gradient
strengths. However, Fig. 8 shows that in regions of sub-
stantial probability mass with respect to fr and D⊥, the
likelihood does show a substantial peak in the micron
range of axon radius. It also illustrates that the prior in-
fluences the chains away from the very small radii ob-
served without it, in Fig. 7.

Marginal posterior distributions for all other param-
eters with priors are shown in Fig. 9, and in each case
there are substantial differences between the prior and
posterior distributions, indicating the influence of the
data.

Axon radius index maps obtained without use of the
prior on R are shown in Supporting Fig. S1. Although
some of the same areas of higher radius are still just
about visible, the maps appear more noisy and demon-
strate less consistency and smoothness. Reproducibility
is also substantially lower in this case: in subject 1, for

8



Figure 6: Boxplots of sampled posterior axon radius index in five subregions of the corpus callosum, across both scans, in each
subject. In each case median axon radius index was highest in the anterior mid-body (blue). Filled circles represent outliers
more than 1.5 interquartile ranges above the third quartile.
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Figure 7: Histograms of sampled posterior
axon radius index values across the entire
corpus callosum, in the first scan of the first
subject. Samples are shown from fits per-
formed both with (blue) and without (red)
applying the gamma prior distribution (black
curve). The upper figure uses a standard
x-axis and shows just those samples below
20 µm, while the bottom figure shows all
samples on a logarithmic x-axis. Note that
both y-axes are broken to accommodate very
tall bars.
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Figure 9: Histograms of sampled posterior
values for each parameter with a prior dis-
tribution, except axon radius index which is
shown in Fig. 7. The prior itself is shown as a
black curve. The posterior distributions dif-
fer substantially from the priors in each case,
demonstrating the influence of the data.

example, H decreases from 0.92 to 0.69. Voxelwise co-
efficients of variation averaged 311% without the prior,
across all subjects, compared to 42% with the prior.

Discussion

Our key contribution in this paper has been to demon-
strate that structured prior information can improve pre-
cision in microstructural parameter estimates. Using this
platform, we have explored the application of the Ac-
tiveAx approach to in vivo axon radius imaging using
the popular DSE pulse sequence on a clinical scanner.
Such a standard MRI system is suboptimal for this kind
of work, but commonly available, and our results in-
form the feasibility of “histological” imaging on typi-
cal hardware and with a standard pulse sequence, al-
beit one which has been optimised for the task. We
used Bayesian MCMC simulation to estimate the tis-
sue model parameters of interest, formally accounting
for both prior expectations and the information available
in the data.

Given the challenges associated with microstructure
imaging on this platform, we found that it was neces-
sary to regularise the problem by using informative prior
distributions for several parameters, and particularly for
the axon radius itself. We showed that this information
improves precision at intermediate values of axon ra-
dius index (Fig. 7), without introducing significant bias
when the assumption of a single radius holds (Fig. 3).
Synthetic data based on a substrate containing a distri-
bution of radii did lead to bias, most likely because of

the greater signal contribution from within wider cylin-
ders. Nevertheless, it was still possible to tell distribu-
tions with different means apart a posteriori, with their
ordering preserved.

Because of the strong influence of the priors, it can-
not be said that we are truly estimating axon radius, since
the range of acceptable values is effectively imposed by
the prior. Moreover, we cannot demonstrate any im-
provement in accuracy, since ground-truth data are not
available in vivo. Nevertheless, it is reasonable to inter-
pret the relative differences from voxel to voxel as cor-
responding to meaningful variation across, in this case,
the corpus callosum—and likewise, results are compara-
ble across subjects since the priors are the same in each
case. Scan–rescan consistency was seen to be reason-
able, both visually and in terms of a quantitative his-
togram intersection measure. Subject 3 was the least
consistent, possibly due to small within-volume move-
ments during scanning or other external factors.

Our experiment with synthetic data suggested that
our fitting process should provide sensitivity to axon
radii of around 3–15 µm (Fig. 3). The contrast in the
in vivo results may therefore reflect the detection of rel-
atively large axon radii in certain parts of the corpus
callosum—although our fits from substrates containing
gamma distributions of radii suggest that while quali-
tatively meaningful, our axon radius index values are
likely to be overestimates. Nevertheless, while Alexan-
der et al. (2010) and Dyrby et al. (2013) have suggested
that only very weak sensitivity to axon radius index is
available at clinical gradient strengths, we have shown
that using suitable priors can ameliorate the situation.
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This advantage applies even at the upper end of what
is currently achievable on human systems (cf. Fig. 4,
where precision is shown to be higher with the prior than
without it). Moreover, since eddy current distortions are
worse at higher gradient strengths, the favourable eddy
current properties of the DSE sequence will also be par-
ticularly useful in this regime. The combination of the
DSE sequence and informed fitting process may there-
fore be a powerful one for future microstructural imag-
ing studies on the next generation of scanner hardware—
although there are other practical challenges to over-
come, such as signal loss due to the greater influence of
concomitant fields Setsompop et al. (2013). It will also
be important for future work to compare DSE against
oscillating gradient sequences and other alternatives, in
combination with suitable priors, to fully evaluate their
relative merits.

Although the trends we observe suggest that our
technique may act as a detector for voxels containing
larger axons, the results must be interpreted with cau-
tion because of the simplicity of the tissue model used.
The three compartment model described by Eq. (1) ig-
nores a great deal of the complexity in real tissue, even
in relatively coherent and homogeneous areas of white
matter such as the corpus callosum. There has been
recent work adding characteristics such as membrane
permeability and fibre dispersion and crossing to simi-
lar models (Nilsson et al., 2009; Zhang et al., 2011a,b),
and distributions of axon radii were included in the Ax-
Caliber model (Assaf et al., 2008). Other factors which
may need to be taken into account include the possibil-
ity of different T2 relaxation constants in different tissue
compartments (cf. Szafer et al., 1995; Xu et al., 2011).
Hence, further investigation using more complex mod-
els will be required to clarify the source of the contrast
observed in our axon radius index maps (Fig. 5). There
are also some limitations to our sequence parameterisa-
tion, such as the assumption of rectangular—rather than
trapezoidal—pulses, which were not addressed so as to
keep the theoretical signal model analytically tractable.
The latter may, however, have only a small influence
(Ianuş et al., 2013). Finally, we optimised the sequence
for axon radii larger than those actually expected in tis-
sue, to make the optimisation stable—although it is un-
likely that sensitivity to smaller radii could be improved
substantially using the same scanner hardware.

In conclusion, we have found that some sensitivity
to relatively large axons may be available using the stan-
dard DSE pulse sequence at clinical field and gradient
strengths, if the scan is well set up and parameter esti-
mation is performed carefully, with the use of suitable
prior information. We have demonstrated a consistent
trend in axon radius parameter maps which is broadly in
keeping with known tissue characteristics, although cau-
tion is required in the interpretation of this finding. It
may be that contrast arises from large axons of radius
around 3 µm and above, although it may also arise from

variations in microscopic or macroscopic fibre disper-
sion (cf. Nilsson et al., 2012), axonal undulation (Dyrby
et al., 2014), or from differences in other tissue proper-
ties such as membrane permeability. In vivo axon radius
imaging on clinical scanners should therefore be treated
cautiously at present, but as stronger gradients become
available on these scanners—a tendency which is begin-
ning to become reality—results will improve, and infer-
ring tissue characteristics should become more practical.
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Supporting Figure S1: Maps of axon radius index, estimated in the absence of the prior on R. Compared to Fig. 5, the maps
are noisier and show less scan–rescan consistency.
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