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Abstract

Graph representations of brain connectivity have attracted a lot of recent interest, but existing methods for dividing such
graphs into connected subnetworks have a number of limitations in the context of neuroimaging. This is an important
problem because most cognitive functions would be expected to involve some but not all brain regions. In this paper we
outline a simple approach for decomposing graphs, which may be based on any measure of interregional association, into
coherent ‘‘principal networks’’. The technique is based on an eigendecomposition of the association matrix, and is closely
related to principal components analysis. We demonstrate the technique using cortical thickness and diffusion tractography
data, showing that the subnetworks which emerge are stable, meaningful and reproducible. Graph-theoretic measures of
network cost and efficiency may be calculated separately for each principal network. Unlike some other approaches, all
available connectivity information is taken into account, and vertices may appear in none or several of the subnetworks.
Subject-by-subject ‘‘scores’’ for each principal network may also be obtained, under certain circumstances, and related to
demographic or cognitive variables of interest.
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Introduction

There has been a substantial amount of recent interest in

network representations of neural connectivity. Abstract ‘‘graphs’’

can be employed to represent the broad pattern of association

between brain regions, using structural and functional imaging

methods to obtain this information [1]; and a great deal of theory

exists regarding the characterisation and manipulation of graphs in

general, dating back as far as Leonhard Euler’s 18th-century

solution to the now-famous ‘‘seven bridges of Königsberg’’

problem [2]. This body of theory offers tools for describing and

comparing patterns of brain interconnectivity, with potential

relevance for clinical and nonclinical neuroscience. For example,

one might expect that a network in which links between regions

are laid out less ‘‘efficiently’’ would correspond to a penalty in

mental processing speed—and early clinical and cognitive studies

using graph theory are beginning to bear such views out (e.g.

[3,4]). Such characteristics are also useful in understanding the

trade-offs associated with brain evolution under practical space

and resource constraints [5]; and graphs are widely used in

genomics and proteomics.

The abstract nature of graphs means that the same theoretical

platform may be used to analyse networks generated from very

different source data, and this may be seen as both an advantage

and a potential source of confusion. Brain connectivity graphs

have been created using measures of association such as between-

subject correlations in cortical thickness [3,6], within-subject

correlations in functional imaging time series [7,8], or the number

of reconstructed streamlines from diffusion tractography [9,10].

Attempts to unify the findings in these different modalities have

tended to observe some similarities between the graphs, but also

notable differences [11,12]. The choice of brain regions to act as

the vertices of the graphs tends to be ultimately arbitrary, but may

be based on a semiautomated anatomical parcellation, or else

simply by creating many small cortical patches of similar size.

However, the choice of vertices, as well as the exact basis for

retaining or discarding the edges which connect them, will have a

significant impact on the results and conclusions of a given analysis

[13].

In clinical and neuroscientific applications, the difficulties

involved in reliably applying graph methods are compounded.

The functional importance of the ‘‘small-world’’ organisation of

the brain, with some regions forming highly connected hubs, is

well recognised [9,14,15], and in any given study it is reasonable to

assume that only a subset of the cortical regions obtained from a

full brain parcellation will be of relevance—but graph-theoretical

analysis is usually performed on the whole network. The best way

to identify important subnetworks is not obvious: this is a problem

which has received considerable attention over several decades in

the broader network analysis literature, under the general heading

of ‘‘community detection’’ [16]. This term generally refers to the

process of analysing a graph and partitioning it into ‘‘communi-

ties’’ of highly interconnected vertices, often choosing the partition

which maximises ‘‘modularity’’, a measure which quantifies the

excess within-community connectivity relative to a randomly

connected graph. Modularity maximisation methods have been

applied in a number of imaging studies (e.g. [17,18]), but such

methods tend to consider only whether each pair of nodes is

connected, without taking the weight of each connection into

account. As an alternative to modularity optimisation, some

studies have performed hierarchical clustering to group strongly

associated vertices into subgraphs (e.g. [19,20]), a natural

approach which does take advantage of the availability of a

similarity measure between regions. But this technique does not
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directly indicate the relative importance of each subnetwork, and

nor is it clear when one should stop agglomerating or dividing

clusters. Finally, Iturria-Medina et al. [10] identify common

‘‘motifs’’ in their networks, but these are limited to patterns of

interconnection between very small and nonspecific groups of

vertices.

In this paper we introduce the concept of ‘‘principal networks’’,

a simple technique for identifying influential subnetworks with

strong internal connectivity using a data-driven eigendecomposi-

tion approach, akin to principal components analysis (PCA). We

present this framework as an alternative to graph partitioning

methods, which groups together vertices with similar patterns of

association and allows multiple ‘‘layers’’ of connectivity to be

considered separately. The relative importance of different

subnetworks can be easily established using this method, as can

the degree of influence of each cortical region in each principal

network. We demonstrate the method using cortical thickness and

diffusion tractography data.

Results

For brevity in the presentation of these results, each cortical

region segmented by Freesurfer is given a numerical index. The

correspondence between region names and indices is given in

Table 1.

The full association matrix derived from cortical thickness data

from all 28 participants is shown in Fig. 1. We observe that it is

dominated by moderately strong positive correlations but, by

ordering the rows and columns according to their loading in the

first principal network, the matrix appears more structured.

Graphs representing the most influential three principal

networks (PNs) are shown in Fig. 2. Note that since the association

matrix in this case is a correlation matrix, the principal networks

are equivalent to principal components of the original cortical

thickness data. It is immediately evident that the first PN captures

a broad tendency for positive correlation in cortical thickness

between the majority of the regions of interest. It includes 44 of the

64 regions, and is fully connected; i.e. every vertex is connected to

every other. By contrast, the second PN includes only 28 vertices

and is far more sparsely connected. It also includes a mixture of

positively and negatively weighted edges. Various graph-theoret-

ical characteristics of the original graph, as well as all PNs

containing at least two vertices, are given in Table 2. We note that

the most strongly-connected vertex in both the full graph and PN1

is the left precuneus, an area regularly reported as being important

in brain networks (see, for example, [9]).

Our bootstrap analysis showed that on average, across the 1000

replicates, 84% of vertex memberships matched for the first

principal network, 66% for the second, and 63% for the third.

Further, the consensus first PN matched the first PN obtained

from the full dataset almost perfectly, with only a single extra

vertex appearing in the former.

Running the Newman modularity maximisation algorithm on

our cortical thickness data resulted in a partition of the graph into

two groups (or ‘‘communities’’) of 32 vertices, as shown in Fig. 3.

Approximately half of the vertices in each group are from each

hemisphere. 12 bilateral pairs appear within each of the groups,

while the remaining eight, including the precuneus, straddle the

partition, with the left-sided region appearing in one group and the

right-sided region appearing in the other. There is very little

correspondence with the main principal network: 25 of the vertices

that appeared in PN1 are in one of the communities, while the

other 19 are in the other.

Fig. 4 shows the results of applying agglomerative hierarchical

clustering to the cortical thickness data. The pair of vertices with

the smallest distance (i.e. highest correlation) is the left and right

superior parietal gyrus, followed by the left and right superior

frontal gyrus, and then the left and right precuneus. To highlight

the relationship between these results and the output of the

principal networks analysis, the nodes which appear in each PN

are highlighted underneath the dendrogram. We observe that in

this case there is an approximate correspondence between one of

the top-level clusters and the first PN, although the association is

not exact. There is no clear link between clusters and the other two

PNs.

Scores for the first principal network, calculated according to

Eq. (4), were very strongly correlated with the mean cortical

thickness across all regions (DrD~0:982, 95% confidence interval

0.962–0.992). No such relationship existed for other major PN

Table 1. Correspondence between region names and indices
used in this paper.

Region name Index (left) Index (right)

caudal anterior cingulate cortex 1 33

caudal middle frontal gyrus 2 34

cuneus 3 35

entorhinal cortex 4 36

fusiform gyrus 5 37

inferior parietal gyrus 6 38

inferior temporal gyrus 7 39

cingulate gyrus, isthmus 8 40

lateral occipital cortex 9 41

lateral orbitofrontal cortex 10 42

lingual gyrus 11 43

medial orbitofrontal gyrus 12 44

middle temporal gyrus 13 45

parahippocampal gyrus 14 46

paracentral gyrus 15 47

inferior frontal gyrus, pars opercularis 16 48

inferior frontal gyrus, pars orbitalis 17 49

inferior frontal gyrus, pars triangularis 18 50

pericalcarine cortex 19 51

postcentral gyrus 20 52

posterior cingulate gyrus 21 53

precentral gyrus 22 54

precuneus 23 55

rostral anterior cingulate cortex 24 56

rostral middle frontal gyrus 25 57

superior frontal gyrus 26 58

superior parietal gyrus 27 59

superior temporal gyrus 28 60

supramarginal gyrus 29 61

frontal pole 30 62

temporal pole 31 63

transverse temporal gyrus 32 64

Note that each region has one index value for each of the left and right
hemispheres.
doi:10.1371/journal.pone.0060997.t001
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scores. Fig. 5 shows plots of the scores for each of the first three

PNs against age, by way of illustration of how these values may be

used in further analysis. Linear model fits to these data showed

that PN1 scores were significantly affected by age but not gender

(t25~{2:17, Pv0:05); PN2 scores were significantly influenced

by gender but not age (t25~3:97, Pv0:001 for males relative to

females); and PN3 scores were not affected by either variable (both

Pw0:35). We can interpret the significant effects as differences in

the average cortical thickness within the regions appearing in each

subnetwork, between the sexes or with age.

To illustrate the results obtained subject-by-subject from the

diffusion tractography data, the PNs with the largest eigenvalue for

each of the two repeated scans of the two individuals with median

age (both male) are shown in Fig. 6. In all cases these networks

highlight the strong structural interconnectivity between subre-

gions of cingulate cortex: the left and right caudal anterior

cingulate cortex, and left and right posterior cingulate gyrus,

invariably appear in all four graphs. Graph properties of PN1 in

each of these cases are given in Table 3. Region 33, the right

caudal anterior cingulate cortex, is the most strongly connected

vertex in all cases.

Across the whole data set, the principal networks were

extremely consistent between the first and second scans, with

some 97% of vertex memberships agreeing across scans for the

first principal network, 96% for the second, and 93% for the third.

Moreover, regions of the cingulate cortex were involved in 100%

of first PNs across both scans, thereby lending very substantial

weight to the importance of these regions in the connectome. The

20 largest eigenvalues for each subject’s first scan are shown in

order in Fig. 7, and a very similar pattern of fall-off may be

observed from subject to subject.

Discussion

In this manuscript we have described a simple and general

technique based on what we refer to as ‘‘principal networks’’. This

method allows brain connectivity networks to be decomposed into

subnetworks of strongly interconnected vertices. The influence of

each subnetwork in the source data, and the weight of each vertex

within a subnetwork, can be obtained easily. In the case of

networks based on region-to-region correlation across subjects,

such as cortical thickness correlations, the method is functionally

equivalent to principal components analysis, and scores for each

PN can be calculated subjectwise and compared. We have

demonstrated that PNs are stable, meaningful and reproducible:

stable, because key aspects of the full network are preserved in

major PNs (Figs 1 and 2, Table 2); meaningful, because regions

involved in major PNs are consistent with current understanding

of the most connected parts of the brain (Tables 2 and 3); and

reproducible, because the most important subnetwork obtained is

highly consistent across scans (Fig. 6 and Table 3). We have also

shown that principal networks can be derived from imaging data

of different sorts. Although the spectral decomposition of a graph’s

association matrix has been well-studied in theoretical work—

indeed, it is central to the subfield of spectral graph analysis [21]

—we believe that this study represents the first use of our

particular approach to identify subnetworks in the context of brain

connectivity analysis. Spectral graph methods have however been

used in other contexts, such as in disease progression modelling

[22], or in the ‘‘normalised cuts’’ algorithm used in image

segmentation [23].

In Fig. 1 we demonstrated that the loadings obtained from the

principal networks analysis (PNA) reflect real structure in the

original association matrix. Fig. 2 showed examples of how the

different principal networks capture distinct aspects of the source

data, with varying numbers of connected vertices. The first PN by

definition represents the subnetwork with the greatest extent of

internal connectivity, and as such it was seen to capture the

tendency for large-scale all-to-all association in the cortical

thickness data, with scores that capture essentially the same

information as the overall mean cortical thickness—and correlate

with age (see Fig. 5). Subsequent PNs captured more subtle

characteristics, with the second PN’s scores correlating with

gender in this data set. Figs 3 and 4 showed the results of

modularity maximisation and hierarchical clustering on the same

Figure 1. Visualisation of the full association matrix derived from all cortical thickness data. The matrix is shown twice, with the gyral
regions ordered either numerically by index (left), or by their loading in the first principal network (right). The scale is based on Pearson’s correlation
coefficient between regions, across all participants.
doi:10.1371/journal.pone.0060997.g001
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data for comparison. In Fig. 6, the applicability of the technique to

diffusion data was demonstrated, as well as the scan–rescan

reproducibility. As Tables 2 and 3 highlight, graph-theoretical

measures can be easily derived from all PNs.

In exploratory analyses, where the set of key regions of interest

may not be known in advance, and in other cases where multiple

circuits may be of relevance, subnetwork analysis of the sort

offered by PNA is of significant importance. The key difference

between PNA and more well-established community finding

approaches such as modularity maximisation is that the former

does not simply attempt to partition the graph into subcompo-

nents, but rather factorises the association matrix and constructs

separate graphs from each component. This approach has the key

advantages of taking all connection strengths into account and

allowing different ‘‘layers’’ of association to be extracted. The

modularity maximisation approach, by contrast, is a purely graph-

based method, and does not consider how strongly vertices are

associated. Modularity methods usually do not allow a vertex to

belong to multiple communities either, although some recent

developments offer more flexibility in this regard [24,25].

Hierarchical clustering offers another alternative approach to

identifying connected subnetworks, and because it considers

connection strength, it produces results more closely related to

those of PNA (see Fig. 4). Nevertheless, this approach has its own

limitations. Clusters are built up from pairwise associations,

without reference to the rest of the association matrix. The

approach requires a vertex to be either in or out of a cluster, rather

than allowing for weights or degrees of uncertainty. For a given

‘‘height’’ threshold, every vertex will appear in exactly one

subnetwork: the possibility that a vertex should be wholly

disregarded, or that it is involved in several networks, does not

exist. Finally, a decision has to be made on how to perform cluster

agglomeration (or division), and there are several methods

available, including complete linkage, used above, and single

linkage, which considers the pair of vertices with the lowest

distance. More closely related to the principal networks approach

in terms of methodology are spectral clustering and methods based

on the eigensystem of the so-called Laplacian matrix of a graph

(e.g. [26,27]), but such methods are usually used to obtain a hard

and mutually exclusive partition, tend to be applied to relatively

sparse graphs, and are not currently well-used in connectomics. In

the end, the best choice of approach is likely to depend on the data

and the scientific question under evaluation. PNA simply offers a

powerful new alternative, which additionally offers the ability to

calculate scores relating to each subnetwork.

The exact results of the principal networks approach will of

course depend on the particular measure of interregional

association used to create the original graph, and to some extent

the nature of other preprocessing steps that are applied to the data.

For diffusion data, in particular, a wide range of connectivity

measures have been used in the literature, which may attempt to

compensate for the sizes of the two regions, their distance from one

another, and so on. The association measures we have used in this

study are intended to create indicative results to illustrate the

method of principal networks, but the method is by no means

limited to these, and the choice of measure can be made according

to the focus of a particular study. Association matrices which are

not positive-semidefinite will produce negative or perhaps even

complex eigenvalues, or else not be diagonalisable, but for the vast

majority of practical cases with appropriately-chosen association

measures, we would expect the method to be applicable. Where

noise plays a major role it may be possible to find a positive-

semidefinite matrix which closely approximates the observed

association matrix [28].

When performing PNA a decision must be made on how many

principal networks to consider. A common approach in PCA is to

retain those components which have an eigenvalue greater than

the value which would be expected if the variance were divided

equally amongst all components, and that approach can also be

taken with principal networks, but in the graph context we have

simply considered networks containing at least two vertices—since

smaller networks cannot encapsulate any interesting connectivity

information. Less straightforward is the decision on which vertices

to include in each subnetwork. In this study we have simply used a

Figure 2. First (top), second (middle) and third (bottom) principal networks, based on all cortical thickness data. Only vertices and
edges above the appropriate loading and weight thresholds are shown. The vertices are laid out regularly in a circle for visual clarity, and ordered by
their loading in the appropriate PN.
doi:10.1371/journal.pone.0060997.g002

Table 2. Graph characteristics of cortical thickness networks.

Principal network Full network 1 2 3 4 5 6 7

Eigenvalue N/A 21.55 6.47 5.16 4.07 3.18 2.52 2.40

Number of connected vertices 64 44 28 21 13 7 4 3

Most connected vertex 23 23 24 63 54 4 14 53

Number of edges 1434 990 113 56 36 7 10 5

Connection density, % 68.94 100.00 27.83 24.24 39.56 25.00 100.00 83.33

Mean absolute edge weight 0.44 0.43 0.25 0.24 0.26 0.23 0.23 0.22

Mean shortest path, steps 1.32 1.00 1.72 1.76 1.63 1.71 1.00 1.00

Mean clustering coefficient 0.78 1.00 0.89 0.87 0.86 0.00 1.00 1.00

Global efficiency 0.84 1.00 0.64 0.62 0.69 0.64 1.00 1.00

Local efficiency 0.89 1.00 0.95 0.75 0.55 0.00 1.00 1.00

Properties of the full network, plus each principal network containing more than one vertex, are given. The most connected vertex in each case is based on the sum of
absolute weights of edges connected to the vertices, ignoring self-connections. Efficiency measures are calculated following Latora & Marchiori [41]. Unweighted
versions of all measured are used, where the option exists.
doi:10.1371/journal.pone.0060997.t002
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loading threshold, the choice of which is inevitably arbitrary. More

sophisticated approaches to identifying ‘‘significant’’ loadings have

been proposed, such as using bootstrap methods [29], but these

introduce additional complexity, and exploration of such tech-

niques is therefore left as future work. Nevertheless, we have

shown that using a single threshold level, reproducible results can

be obtained. The thresholds were chosen before the analysis

began, and no tweaking or optimisation was necessary.

If the analysis is carried out on separate data sets, the question

arises of how to identify equivalent PNs from each set of results.

Assuming that the full set of vertices is the same in each case, there

are a number of ways that this may be achieved, such as by

matching up the component eigenvectors to maximise their inner

products, which would be computationally straightforward.

One limitation of the principal networks approach laid out

above is the constraint that the loading vectors for each

subnetwork be orthogonal. In practice, groups of vertices which

do not meet this criterion may be of significance, and future work

will therefore explore the use of nonorthogonal loadings.

In conclusion, ‘‘principal networks’’ represents a new approach to

graph-based neural connectivity analysis, offering a simple and robust

way to identify and analyse important subnetworks. It is applicable to

a large class of connectivity graphs relevant to clinical and nonclinical

neuroscience applications, and provides a platform for investigating

the involvement of various neural circuits in populations of interest. A

reference implementation of the method will be made available

through the open-source TractoR software package [30].

Methods

Ethics statement
Informed written consent was obtained from all subjects

participating in this study. Processes for consenting and image

acquisition were approved by the UCL Research Ethics Committee.

Figure 3. Result of partitioning the thresholded cortical thickness association matrix, using a well-established modularity
maximisation algorithm. Two groups of vertices, of equal size, emerge. These are delimited by horizontal and vertical black lines. Since this
algorithm does not identify an ordering for vertices, they are ordered numerically within each group.
doi:10.1371/journal.pone.0060997.g003
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Theory
In this section we outline the theoretical basis of principal

networks. We begin by assuming that some kind of parcellation

process has been applied to a structural image of the brain,

resulting in a set of regions to be used as the full set of vertices in

the connectivity graph. In addition, we assume that some measure

of association has been calculated between each pair of regions,

resulting in a square association matrix providing some informa-

tion on the ‘‘connection’’ between regions. Nonsymmetric

matrices correspond to ‘‘directed’’ graphs, while an ‘‘undirected’’

graph will have a symmetric association matrix.

We denote the association matrix by A. Its elements, Aij ,

quantify in some sense the connection between regions i and j, of

which there are M in total. These elements may be binary— i.e.

either 1 or 0—if appropriate. Diagonalising the association matrix,

we have

A~QLQ{1 , ð1Þ

where L is a diagonal matrix of eigenvalues, (lk), and Q is a

matrix whose columns contain the M eigenvectors of A. This

diagonalisation will be possible in most practical cases, and in

particular will always exist for symmetric real association matrices.

We note that in the specific case where A is a correlation matrix,

as in cortical thickness or functional connectivity analyses, Q
corresponds to the loading matrix of a PCA transformation of the

original data—centred and scaled to have zero mean and unit

variance within each region—with the kth column of Q
representing the ‘‘loadings’’ for the kth principal component.

The magnitude of each eigenvalue indicates the degree of

influence which the corresponding component had in the original

association matrix. However, to form a principal network, we need

an association matrix specific to each of these components. We can

calculate a ‘‘partial’’ association matrix using Eq. (1), by setting all

eigenvalues except the one of interest to zero, viz.

~AAk
ij~lkQikQjk ð2Þ

The full association matrix is then a straightforward sum of

these component matrices:

A~
X

k

~AAk ð3Þ

The loading, or influence, of region i on the kth principal

network is given by Qik, and a threshold may be applied to these

values to determine which regions to retain within a given

principal network. Likewise, the importance of each edge between

the vertices of the kth principal network is given by the

appropriate element of the partial association matrix, ~AAk.

Finally, in the case where A is a correlation matrix, the original

N|M scaled data matrix, X—where N is the number of

observations, typically subjects—can be used with the eigenvector

matrix to reconstruct a transformed set of ‘‘scores’’, Y, which

represent the projection of each data point along the eigenvectors.

Hence, we have

Figure 4. Dendrogram showing the results of hierarchical clustering applied to the cortical thickness data, using (1-correlation) as
the distance measure. ‘‘Height’’, on the y-axis, refers to the maximum distance between vertices in each pair of clusters. The coloured lines at the
bottom of the figure indicate which vertices appear in each of the three main PNs.
doi:10.1371/journal.pone.0060997.g004
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Y~XQ , ð4Þ

where Yij can be thought of as the influence of principal

network j on observation i. These scores may be meaningfully

compared between subsets of the data.

An illustration of the technique applied to a simple network with

five vertices is shown in Fig. 8. In this undirected graph, the odd-

numbered vertices are connected together with edges of weight

0.8, and the even-numbered vertices are connected together with

edges of weight 0.9. All other edges have a weight of 0.05, except

for the edge between nodes 4 and 5, which has a weight of 0.2.

Self-connections have a weight of unity. It has several character-

istics which are typical of brain connectivity networks: its edges are

weighted and it is densely connected, although several edge

weights are very small.

Principal networks analysis correctly decomposes this graph into

the two subnetworks of even and odd vertices. The eigenvalues of

the association matrix are, from largest to smallest, 2.65, 1.86,

0.25, 0.20 and 0.05, clearly indicating the presence of exactly two

nontrivial eigenvectors. The first eigenvector is strongly weighted

on vertices 1, 3 and 5, while the second emphasises vertices 2 and

4. The spectral decomposition of the association matrix captures

this information because major eigenvectors represent linear

combinations of vertices which jointly make a large contribution

to the overall ‘‘amount of connectivity’’ in the full graph.

Image acquisition and processing
The participants for this study were 28 healthy adults (12

female), with ages ranging from 20 to 39 yr (mean 28.5 yr,

standard deviation 3.9 yr). Each participant underwent an MR

imaging protocol on a Siemens Avanto 1.5 T clinical system

(Siemens Healthcare, Erlangen, Germany), using a self-shielding

gradient set with maximum gradient strength of 40 mT m{1, and

standard twelve-channel quadrature head coil. Two T1-weighted

3D Fast Low-Angle SHot (FLASH) structural images were

acquired using 176 contiguous sagittal slices, a 256|224 mm

Figure 5. Scores for each of the three major principal networks based on cortical thickness, plotted against age. Note that the scores
for each PN sum to zero.
doi:10.1371/journal.pone.0060997.g005
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field of view and 1|1|1 mm image resolution. Flip angle was

150, echo time was 4.94 ms, and repetition time was 11 ms. In

addition, echo-planar diffusion-weighted images were acquired for

an isotropic set of 60 noncollinear directions, using a weighting

factor of b~1000 s mm{2, along with three T2-weighted (b~0)

volumes. In this case 60 contiguous axial slices of width 2.5 mm

were imaged, using a field of view of 240|240 mm and 96|96
voxel acquisition matrix, for a final image resolution of

2:5|2:5|2:5 mm. Echo time was 81 ms and repetition time

was 7300 ms. The diffusion protocol was performed twice per

subject, to allow scan–rescan reproducibility to be assessed.

The T1-weighted images from each subject were converted

from DICOM to MGH format using the TractoR software

package [30]. They were then processed using Freesurfer version

5.1.0 to parcellate the cortical surface into 32 gyral regions per

hemisphere [31], and to estimate the cortical thickness in each

region [32].

Diffusion MRI data from each subject were converted from

DICOM to NIfTI-1 format, and preprocessed to remove eddy-

current induced distortions. The brain was extracted from the

images using the brain extraction tool from the FMRIB Software

Library [33]. Diffusion tensors were fitted using standard least-

squares estimation, and the fractional anisotropy (FA) calculated at

Figure 6. First principal network derived from diffusion data in each of two repeat scans of two subjects. The location of each vertex is
based on the original segmentation, using the spatial median of the corresponding region. All four graphs emphasise the strong interconnections
between subregions of cingulate cortex.
doi:10.1371/journal.pone.0060997.g006
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each voxel. A ‘‘ball-and-sticks’’ model, allowing for two fibre

orientations per voxel, was fitted for each data set as described by

Behrens et al. [34], and whole-brain tractography was performed,

initialising one streamline from each voxel with an FA of at least

0.2 to avoid seeding in deep grey matter or cerebrospinal fluid.

The exact subvoxel seeding position was subject to random jitter in

each case—drawing from a uniform distribution within the

voxel—to move the seeds off the regular imaging grid. This

allows any part of the voxel to be taken as the seed point, rather

than just the centre, thereby avoiding the creation of an unnatural,

grid-like streamline set.

Principal network calculation
Principal networks were calculated from cortical thickness data

by calculating the cross-subject correlation matrix between

average regional thicknesses, using Pearson’s correlation coeffi-

cient. This correlation matrix was used directly as the association

matrix in this modality, and PNs were calculated as described in

the Theory section. A loading threshold of 0.1, ignoring sign, was

applied to the vertices of each PN to determine whether or not to

include them, and an absolute correlation threshold of 0.2 was

used to threshold edges. Scores were calculated for each PN in

each subject, following Eq. (4).

For comparison, the well-known and efficient modularity

maximisation algorithm described by Newman [35] was applied

to the cortical thickness data, after applying the same absolute

edge weight threshold of 0.2. This algorithm partitions the graph

until further subdivision would not further increase the modular-

ity. In addition, agglomerative hierarchical clustering was

performed using (1{r) as the distance measure, with r the

correlation coefficient between a pair of vertices. A ‘‘complete

linkage’’ approach was taken, whereby the distance between

clusters is taken to be the maximal distance between pairs of

constituent vertices.

The average T1-weighted image for each subject, as calculated

by Freesurfer, was transformed into the space of the diffusion b~0
image using nonlinear fast freeform deformation–based registra-

tion, as implemented in the the Nifty Reg package [36], using the

Table 3. Graph characteristics of diffusion tractography
networks.

Subject 1 2

Scan 1 2 1 2

Eigenvalue 10.50 11.01 11.93 12.10

Number of connected
vertices

6 6 6 5

Most connected vertex 33 33 33 33

Number of edges 16 18 18 14

Connection density, % 76.19 85.71 85.71 93.33

Mean absolute edge weight 1.47 1.53 1.65 1.99

Mean shortest path, steps 1.20 1.07 1.07 1.00

Mean clustering coefficient 0.85 0.93 0.93 1.00

Global efficiency 0.90 0.97 0.97 1.00

Local efficiency 0.93 0.97 0.97 1.00

Properties of the first principal network are given for each of the diffusion data
sets analysed. The most connected vertex in each case is based on the sum of
absolute weights of edges connected to the vertices, ignoring self-connections.
Efficiency measures are calculated following Latora & Marchiori [41].
Unweighted versions of all measured are used, where the option exists.
doi:10.1371/journal.pone.0060997.t003

Figure 7. Eigenvalues of the first 20 principal networks derived from each subject’s first diffusion MRI data set. The pattern of fall-off is
very similar from subject to subject, indicating consistency in subnetwork weights across our cohort.
doi:10.1371/journal.pone.0060997.g007
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RNiftyReg interface for R, version 1.0.1 (http://cran.r-project.

org/web/packages/RNiftyReg/). Individual cortical regions were

extracted from the Freesurfer parcellation and transformed into

diffusion space using the same transformation. The number of

streamlines passing through each pair of regions of interest was

calculated, divided by the average number of voxels in the two

regions, and entered into the association matrix as a symmetric

metric of connectivity. (A unit value of this metric indicates an

average of one streamline per voxel passing through the two

regions of interest, a density equal to that used for seeding. Values

higher than this are of course possible.) Self-connection values

were included so that the association matrix would be positive-

definite. PNs were then calculated from this association matrix. A

loading threshold of 0.1 was again applied to the vertices of each

PN, and a threshold of 0.2 was applied to the connectivity metric.

All analyses were performed and graphics produced using the R

software environment for statistical computing [37,38], along with

the ‘‘lattice’’ and ‘‘ggplot2’’ add-on packages [39,40].

Bootstrap analysis
In order to estimate the stability of the principal network

decomposition of our cortical thickness graph, we performed a

bootstrap resampling analysis. For each of 1000 replicates, 28 sets

of cortical thickness measurements were obtained by randomly

sampling from the 28 subjects with replacement, and the

decomposition was repeated. The proportion of regions whose

membership in each principal network agreed with that obtained

from the original data set was then calculated. A consensus first PN

was also calculated by identifying those regions which appeared in

the first PN for a majority of bootstrap replicates.
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anatomical networks: Does the choice of nodes matter? NeuroImage 50: 970–

983.

14. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human

connectome. The Journal of Neuroscience 31: 15775–15786.

15. Wu K, Taki Y, Sato K, Sassa Y, Inoue K, et al. (2011) The overlapping

community structure of structural brain network in young healthy individuals.

PLoS ONE 6: e19608.

16. Fortunato S (2010) Community detection in graphs. Physics Reports 486: 75–

174.

17. Alexander-Bloch A, Lambiotte R, Roberts B, Giedd JN, Gogtay N, et al. (2012)

The discovery of population differences in network community structure: New

methods and applications to brain functional networks in schizophrenia.

NeuroImage 59: 3889–3900.

18. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing modular

architecture of human brain structural networks by using cortical thickness from

MRI. Cerebral Cortex 18: 2374–2381.

19. Hänggi J, Wotruba D, Jäncke L (2011) Globally altered structural brain network

topology in grapheme-color synesthesia. The Journal of Neuroscience 31: 5816–

5828.

Figure 8. Illustration of the principal networks approach using a simple graph with five vertices (A). The first and second principal
networks (B,C) capture the two canonical subnetworks in the graph.
doi:10.1371/journal.pone.0060997.g008

Principal Networks

PLOS ONE | www.plosone.org 11 April 2013 | Volume 8 | Issue 4 | e60997



20. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, et al. (2005)

Neurophysiological architecture of functional magnetic resonance images of
human brain. Cerebral Cortex 15: 1332–1342.

21. Brouwer AE, Haemers WH (2012) Spectra of graphs. New York: Springer.

22. Raj A, Kuceyeski A,Weiner M (2012) A network diffusion model of disease
progression in dementia. Neuron 73: 1204–1215.

23. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 22: 888–905.

24. Ball B, Karrer B, Newman MEJ (2011) Efficient and principled method for

detecting communities in networks. Physical Review E 84: 036103.
25. Wu J, Jiao L, Jin C, Liu F, Gong M, et al. (2012) Overlapping community

detection via network dynamics. Physical Review E 85: 016115.
26. Pothen A, Simon HD, Liou KP (1990) Partitioning sparse matrices with

eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications 11:
430–452.

27. Saerens M, Fouss F, Yen L, Dupont P (2004) The principal components analysis

of a graph, and its relationships to spectral clustering. In: Boulicaut JF, Esposito
F, Giannotti F, Pedreschi D, editors, Proceedings of the 15th European

Conference on Machine Learning, Springer-Verlag, volume 3201 of Lecture
Notes in Computer Science. pp. 371–383.

28. Higham NJ (2002) Computing the nearest correlation matrix—A problem from

finance. IMA Journal of Numerical Analysis 22: 329–343.
29. Peres-Neto PR, Jackson DA, Somers KM (2003) Giving meaningful interpre-

tation to ordination axes: Assessing loading significance in principal component
analysis. Ecology 84: 2347–2363.
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