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Abstract. Probabilistic tractography provides estimates of the proba-
bility of a structural connection between points or regions in a brain
volume, based on information from diffusion MRI. The ability to esti-
mate the uncertainty associated with reconstructed pathways is valuable,
but noise in the image data leads to premature termination or erroneous
trajectories in sampled streamlines. In this work we describe automated
methods, based on a probabilistic model of tract shape variability be-
tween individuals, which can be applied to select seed points in order
to maximise consistency in tract segmentation; and to discard stream-
lines which are unlikely to belong to the tract of interest. Our method
is shown to ameliorate false positives and remove the widely observed
falloff in connection probability with distance from the seed region due
to noise, two important problems in the tractography literature. More-
over, the need to apply an arbitrary threshold to connection probability
maps is entirely obviated by our approach, thus removing a significant
user-specified parameter from the tractography pipeline.

1 Introduction

Probabilistic tractography uses diffusion MRI (dMRI) data to provide estimates
of the probability of a connection existing between a seed point, or seed region,
and all other points within a brain volume. When the seed region is placed
within a white matter tract, areas of high probability are typically found within
other sections of the same tract. The first step towards estimating these proba-
bilities of connection is to derive an orientation distribution function (ODF) for
each voxel in the brain, which characterises the orientations of local structure.
Several alternative methods for calculating such an ODF have been described
[1], some of which are based on a specific model of diffusion, while others take a
model-free approach. Probabilistic streamlines are then generated by alternating
between sampling from these ODFs and stepping along the sampled direction.
The probability of connection between the seed region and any other voxel is
then estimated as the proportion of these streamlines that visit the target voxel.

Unfortunately, the probabilities of connection estimated by this Monte Carlo
method are strongly affected by nuisance characteristics of the basic data, par-
ticularly noise, as well as limitations of the applied diffusion model. Streamlines
may be deflected away from the tract of interest or prematurely truncated due
to the nearby presence of a disparate tract, or due to ambiguity in the estimated



ODFs, or because of noise—and the estimated probability of connection at a
given voxel may be affected in turn by any or all of these. The most common
method of compensation for these effects is to threshold the visitation map to
avoid including pathways which are unlikely to belong to the tract of interest.
But this approach is very sensitive to an arbitrary user-specified parameter, the
threshold level; and relies on the flawed assumption that false positive pathways
are nonrepeatable and spatially dispersed. Moreover, it cannot correct for effects
which lead to underestimation of the probability of connection, such as the pre-
mature termination of streamlines. A method to compensate for the latter has
been proposed by Morris et al. [2], which uses a “null connection map” to dif-
ferentiate true connections from chance events, but a threshold is still required,
and the technique cannot compensate for the effects of neighbouring pathways.

Seed points or regions may be placed by an observer, or transferred from a
reference tract or atlas by registering dMRI data to a standard brain template.
In either case, seed regions typically have no special anatomical significance,
but are instead located to maximise the chance of reconstructing the tract of
interest as fully as possible. Unfortunately, direct transfer of a seed region from
an atlas space to diffusion space is generally not a reliable basis for consistent
tract reconstruction, although recent work by Clayden et al. [3] described how a
probabilistic model of tract shape variability can be used to select one or more
suitable seed points from within such a region. A related approach was applied
to the clustering of deterministic streamlines by Maddah et al. [4], whereby a
tract trajectory model was used to infer cluster membership.

In this work we describe how the shape modelling approach can be applied
not just to the choice of seed points, but also to the selection of streamlines which
accurately represent a tract of interest. Using a reference tract for prior infor-
mation, but also allowing for the topological variability of a given tract between
individuals, we demonstrate dramatic improvements in patterns of estimated
connectivity, without the need for a user-defined threshold to be applied.

2 Methods

The tract shape model used for this work is based on that described in [3].
Streamlines are represented by uniform cubic B-splines. The knot separation
distance is fixed for each tract of interest, but is invariably larger than the
typical width of an image voxel, so that small scale directional perturbations are
of less importance than the large scale topology of the tract.

Given a set of seed points for a dMRI data set, indexed by i, each of which
generates a set of streamlines, indexed by j, a single B-spline is initially fitted
to the spatial median of the streamline set. The data, mi, which are relevant
to the model then consist of the lengths of this B-spline either side of the seed
point—Li

1 and Li
2—and the angles, φi

u, between the straight lines connecting
successive knot points, and the corresponding lines in the reference tract. The
B-spline is transformed into MNI standard space for the purpose of calculating



these lengths and angles only. The location index u is, by convention, negative
on one side of the seed point and positive on the other side.

Given the observed data, mi, for tract i, the model likelihood is given by

P (mi |Θ) = P (Li
1 |L∗1,L1)P (Li

2 |L∗2,L2)
Ľi

1∏
u=1

P (φi
−u |αu)

Ľi
2∏

u=1

P (φi
u |αu) (1)

where L∗1 and L∗2 are the lengths of the reference tract corresponding to Li
1 and Li

2

respectively; Ľi
1 = min{Li

1, L
∗
1} and equivalently for Ľi

2; and Θ = {L1,L2, (αu)}
is a set of model parameters. The distributions over each variable are given by

Li
1 |L∗1 ∼ Multinomial(L1)

Li
2 |L∗2 ∼ Multinomial(L2) (2)

cosφi
u + 1
2

∼ Beta(αu, 1) .

The model parameters are fitted using an Expectation–Maximisation (EM) al-
gorithm, the E-step of which calculates a posterior probability of each tract
representing the best match to the reference tract [5]. All tracts are assumed to
be a priori equiprobable matches. We use the implementation of this algorithm
provided by the TractoR software package (http://code.google.com/p/tractor).
For the M-step we apply the hyperprior αu − 1 ∼ Exponential(λ), thereby con-
straining each αu to ensure that smaller deviations from the reference tract are
always more likely (i.e. αu ≥ 1), and simultaneously avoiding model overfitting
for small data sets. We take λ = 1 throughout this work.

The fitted model and posterior matching probabilities enable us to select one
or more seed points which produce sets of probabilistic streamlines whose medi-
ans are accurate representations of the tract of interest for that subject. However,
some individual streamlines may not resemble the median, and therefore may
not accurately represent the tract of interest. To establish this, we additionally
apply the modelling framework described above to streamline selection.

In this streamline-level selection phase, we begin by fitting a B-spline to each
streamline, j, individually, and recovering a data vector, dij , which describes it.
This data vector is analogous to mi for the median. Treating (1) as a function
of the data, with the model parameters fixed to those estimated by the EM
algorithm, denoted Θ̂, we calculate the probability of each streamline under the
model, which in turn allows us to derive the value

πij =
P (dij | Θ̂)
P (mi | Θ̂)

. (3)

We then retain streamlines probabilistically, such that

Pr(keep streamline j) = min{πij , 1} . (4)

Hence, streamline j will be retained with certainty if it has higher probability
under the model than the median line itself; otherwise it may be kept if it has not



Fig. 1. Stages of the pruning process, shown in coronal projection. The knots of the
reference tract are shown with 95% confidence intervals on the orientations of each tract
segment (a). We also show a full set of 5000 probabilistic streamlines at full opacity
(b), and with the alpha level for streamline j given by πij (c). The rejection algorithm
is applied to the set, and remaining streamlines are then truncated to the length of the
reference tract (d). A visitation map is finally calculated from this subset (e).

much lower probability. Since heavily truncated streamlines—and those following
paths that differ substantially from the reference tract—will be associated with
much lower values of πij , the contributions of such paths to estimates of the
probability of connection will be annulled. The final step of our algorithm is
to truncate all remaining streamlines to the length of the reference tract in the
portions distal to the seed point. This is necessary for consistent results because
the reference tract provides no orientational information in these regions, and
so inappropriate trajectories have no effect on the value of (3).

This process of streamline pruning is illustrated by Fig. 1 for the left pyrami-
dal tract. The model fitted from the median streamlines embodies the variability
in tract topology across the whole data set. The amount of deviation “allowed”
by the model over each segment of the reference tract is shown in Fig. 1a, in terms
of the 95% confidence intervals on the angular deviation from the reference tract,
which is controlled by the αu parameters in the model. It can be seen that these
confidence intervals tend to be wider towards the ends of the tract, particularly
at the inferior extreme, due to greater uncertainty or variability in this region
of the structure. Mapping the level of transparency to the value of πij for each
streamline in the visualisation makes the effect of the method clear (Fig. 1c):
some spread in the trajectories can be observed at the inferior extreme, in line
with the greater local uncertainty in the model, but other branching structures
are no longer visible. The probabilistic streamline retention algorithm is applied,
the streamlines are truncated to the length of the reference, and a visitation map
is produced (Fig. 1e).



3 Experiments and Results

Eight young, healthy right-handed volunteers (four male; mean age 31.9±5.3 yr)
underwent a dMRI protocol on three separate occasions. Scans were performed
on a GE Signa LX 1.5 T clinical scanner using 64 noncollinear diffusion direc-
tions at a b value of 1000 s mm−2, and 7 b = 0 images. Reconstructed voxel
dimensions were 2 × 2 × 2 mm. ODFs were calculated using the Markov chain
Monte Carlo method of Behrens et al., and all tractography was performed using
the “ProbTrack” algorithm described by the same authors [6]. Reference tracts
were created using a published white matter atlas [7], as described in [8].

For each dMRI data set, initial seed points for each tract of interest were
placed by transferring reference seeds from MNI standard space to diffusion
space, using the FLIRT linear registration algorithm [9]. A neighbourhood of
7 × 7 × 7 voxels (volume 2744 mm3) centred at this point was then used as
a source of seed points for the modelling process. However, seed voxels with a
fractional anisotropy (FA) of less than 0.2 were excluded to save time, since such
voxels are very likely to be outside white matter. Throughout our experiments, a
single seed point from this neighbourhood was retained by the seed-level selection
phase for simplicity—although our approach generalises to multiple seed points
without modification.

In order to investigate the effects of the streamline-level selection which is
the main novelty in this work, we begin by examining the lengths of streamlines
retained. Histograms of the streamline lengths in Fig. 1, before and after pruning,
are shown in Fig. 2. It is immediately evident from this figure that there is far
greater homogeneity in streamline length after the pruning algorithm has been
applied. Inferior to the seed point, in particular, the bimodal distribution seen
before pruning—due to a short and erroneous pathway followed by a plurality
of probabilistic streamlines—is completely absent after pruning.

A significant effect of discarding prematurely truncated streamlines is the
removal of the usual dependence of visitation count on distance from the seed
point. Fig. 3 shows that while applying a 1% threshold to visitation maps can
remove most—though, in this case, not all—false positive pathways, visitation
counts are conspicuously reduced at the superior and inferior extremes of the
tract. After applying the pruning algorithm this issue disappears (Fig. 3c).

The effect on diffusion tensor parameters of applying each of the three treat-
ments is shown graphically in Fig. 4. It is apparent that the three different treat-
ments produce substantially different patterns of FA and MD across the data set,
with greatest dispersion for the untreated case corresponding to Fig. 3a. To fur-
ther quantify the effects on these widely used parameters, we used a simple ran-
dom effects model to estimate their group means and variance components under
each treatment. Treating equivalent tracts in the two hemispheres as repeated
measurements, indexed by n, we model the measurement of FA or mean diffu-
sivity (MD) in the mth scan of the lth subject with flmn = µ+∆l + δlm + εlmn,
where

∆l ∼ N(0, σ2
b ) δlm ∼ N(0, σ2

w) εlmn ∼ N(0, σ2
e) . (5)
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Fig. 2. Histograms showing the lengths of the pruned and unpruned streamline sets
from Fig. 1, on the superior (top) and inferior (bottom) sides of the seed point.

Fig. 3. An untreated visitation map for a left pyramidal tract in the data set (a). Equiv-
alent visitation maps after thresholding at 1% of initiated streamlines (b), and after
pruning (c) are also shown. No threshold is applied in the latter case. The colour scale
indicates the proportion of streamlines passing through each voxel, with red indicating
fewest and yellow most. The underlying images are FA maps.
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Fig. 4. Scatter plot of FA against MD based on binarised visitation maps for bilateral
pyramidal tracts, using different thresholding and pruning strategies on the data.



Table 1. Estimated group mean and error standard deviations for two major tracts.

1% threshold 5% threshold pruned untreated
µ σe µ σe µ σe µ σe

pyramidal tracts, FA 0.448 0.038 0.481 0.038 0.469 0.024 0.389 0.030

pyramidal tracts, MD† 0.804 0.044 0.772 0.038 0.798 0.042 0.891 0.067
cingulum bundles, FA 0.374 0.033 0.438 0.045 0.386 0.044 0.285 0.021

cingulum bundles, MD† 0.782 0.033 0.740 0.035 0.763 0.030 0.907 0.035

† mm2 s−1 (×10−3)

Between-subject (σ2
b ), within-subject (σ2

w) and error (σ2
e) variances over the

data set are thereby distinguished from one another. This model was fitted
using the “nlme” package for the R statistical environment (http://stat.bell-
labs.com/NLME/), using the restricted maximum likelihood method [10]. The
group mean and error variances for pyramidal tracts and cingulum bundles are
summarised in Table 1, using visitation thresholds of 1% and 5% as well as un-
treated and pruned data. Mean FA and MD vary substantially depending on
the threshold level applied, with the untreated results differing noticeably from
the rest. The pruning algorithm produces values between those corresponding
to thresholds of 1% and 5%, and on average the smallest error variance.

4 Discussion

We have demonstrated in this work a process by which a model of tract topology,
combined with a predefined reference tract, can be used to select seed points for
optimal tract segmentation, and also to retain or reject individual streamlines
based on their probabilities under the model. The latter “pruning” method is a
substantial improvement over standard thresholding approaches.

The absence of any user-specified parameters is a major advantage of the
technique. It is rarely advisable to calculate parameters of interest over a region
segmented using untreated tractography output (e.g. Fig. 3a), but we observe
from Fig. 4 and Table 1 that the absolute recovered values and variances of such
parameters are strongly dependent on the chosen threshold level. Moreover, the
tacit assumption that erroneous pathways are nonrepeatable is false—as shown
by the remaining false positive in Fig. 3b—and so finding a single threshold level
which works well for different tracts, or even different parts of a single tract, is
essentially impossible. Unlike a simple threshold, our model is sensitive to the
meaning of the streamline data, and flexible enough to allow appropriate devi-
ation from the reference tract whilst rejecting streamlines which do not follow
its whole length, or branch off it. Since the streamline rejection criterion, (4), is
specific to each subject, variation in tract shape from individual to individual is
implicitly accounted for. Compared to region-of-interest approaches to stream-
line selection, our approach is very much less labour-intensive. Although the
technique described in [2] also attempts to remove irrelevant tractography out-
put, it is not tract specific and continues to rely upon a user-specified threshold.



In the present study we have limited application of our technique to prob-
abilistic tractography using single seed points. Whilst the method could be di-
rectly applied to probabilistic or deterministic fibre tracking output derived from
a neighbourhood of seed voxels, it could not, in its present form, be applied to
whole-brain deterministic tractography. In addition, our focus has been on seg-
menting very specific pathways in groups of subjects with very high consistency,
rather than covering the entire extent of the complex tracts of interest. These
decisions impose some limitations on the immediate scope of this work, but the
general approach has broad applicability. All tractography techniques raise the
question of validation, but an increasing number of studies are vindicating fibre
tracking, and our approach does not make validation any more difficult.

Finally, we have shown that the method ameliorates the usual falloff in con-
nection probability with distance from the seed region. By retaining only sam-
pled streamlines which accurately represent the tract of interest, estimates of
connection probability are more robust, and reflect only genuine uncertainty in
the tract location, rather than the effects of noise.
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