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A Probabilistic Model-based Approach to
Consistent White Matter Tract Segmentation

Jonathan D. Clayden, Amos J. Storkey, and Mark E. Bastin*

Abstract— Since the invention of diffusion MRI, currently the
only established method for studying white matter connectivity
in a clinical environment, there has been a great deal of interest
in the effects of various pathologies on the connectivity of the
brain. As methods for in vivo tractography have been developed
it has become possible to track and segment specific white
matter structures of interest for particular study. However, the
consistency and reproducibility of tractography-based segmen-
tation remain limited, and attempts to improve them have thus
far typically involved the imposition of strong constraints on
the tract reconstruction process itself. In this work we take
a different approach, developing a formal probabilistic model
for the relationships between comparable tracts in different
scans, and then using it to choose a tract, a posteriori, which
best matches a predefined reference tract for the structure of
interest. We demonstrate that this method is able to significantly
improve segmentation consistency without directly constraining
the tractography algorithm.

Index Terms— magnetic resonance imaging, diffusion, brain,
white matter, tractography, segmentation, model, probabilistic

I. INTRODUCTION

THE ADVENT and development of diffusion magnetic
resonance imaging (dMRI), and the more recent estab-

lishment of methods for modelling water self-diffusion in the
brain, starting with the tensor model [1], has made it possible
for the first time to study noninvasively the white matter struc-
tures that make up the brain’s circuitry [2]. Tractography—
the algorithmic reconstruction of white matter pathways—
has become a major application of the dMRI technique; and
segmentation of these pathways, or tracts, has in turn become
a significant use for tractography [3]. Unlike more established
region of interest (ROI) methods, the tractographic approach to
segmentation allows one to semiautomatically “select” white
matter structures of arbitrarily complex shape which would be
extremely difficult to identify by hand with much consistency.

An element of subjectivity typically remains in tractographic
segmentations, however, due to the near-ubiquitous use of
“seed points”. Although many tractography algorithms and
supporting models of diffusion have now been developed
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(e.g. [4]–[13]), the principle is broadly common: it consists
of integrating the local white matter orientation information
provided by a dMRI data set across the brain [3]. However, one
must choose a location from which to begin the reconstruction
process—the seed point—and the final segmentation is often
strongly dependent on the exact location of this point. Hence,
the process of seeding at a single hand-chosen point has
significant reproducibility disadvantages.

The alternative is broadly to seed at a number of points,
after which one can simply combine together the output from
all the individual seed points (e.g. [14]) or constrain the results
to include only those tract paths that pass through two or
more ROIs [15]. The latter approach has been shown to have
reproducibility advantages over less constrained methods [16],
but this kind of additive seeding has the converse disadvan-
tage of losing the inherent specificity of single seed point
tractography. Moreover, it represents a very strong constraint
on the reconstruction process that is quite independent of the
data. Another option is to seed throughout the entire brain
and then segment individual structures by applying clustering
techniques to the resulting set of streamlines [17]–[20]. How-
ever, such an approach would not be directly applicable to
probabilistic tract representations.

We have recently demonstrated proof of concept for an
approach to automated seed point placement in which a set of
“candidate” seed points in some neighbourhood of dMRI space
are each used to generate a tract, and the single seed point is
chosen whose corresponding tract matches best to a predefined
reference tract [21]. In that case, each candidate seed point is
effectively treated as a hypothesis, and the hypothesis with
the best evidence to support it—in terms of tract similarity—
is chosen as the final segmentation for the tract of interest.
In order to assess tract similarity, we presented a heuristic
similarity measure which aimed to capture both shape and
length similarities of the two tracts in question.

In the present work we take this approach further, devel-
oping a formal probabilistic model for the shape and length
relationships between comparable tracts, which we represent
using B-splines. We fit the model’s parameters using super-
vised learning, and then use it to find the candidate tract that
best matches a reference tract amongst a novel data set.

II. THEORY

In the tract matching model described below, we work on
the principle that two tracts are equivalent if they have identical
shape and length. Thus, given a reference tract, the topology of
some other tract—rather than any of its diffusion properties—
is the characteristic that determines whether it matches the
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reference tract or not. We assume that the shape and length
of a matching tract are well predicted by the shape and length
of the reference tract, and consequently that small deviations
from the properties of the reference tract are far more likely
than very large ones. Our aim is to encode these relationships
probabilistically.

A. Tract representation

Ideally, any model for matching tracts should not depend
explicitly on the tractography algorithm being used to gen-
erate them. Since different tractography algorithms produce
various different forms of output, it is necessary to reduce the
inhomogeneity in tract representations as far as possible, while
still capturing the topological properties that are of interest for
assessing tract similarity.

Given a single seed point, some tract reconstructions consist
of a single line running through that point [4], [10], while
others produce a number of sample streamlines with the seed
point in common [5], [8]. In either case, the process for
generating streamlines is typically to choose a local tract
orientation (starting at the seed point), move a short distance in
the corresponding direction, and repeat until some termination
criterion is met. This process has to be performed twice to
reconstruct the complete streamline, since all dMRI derived
tract orientation information is directionally nonspecific. As a
result, each streamline can be conceptually split at the seed
point into two sets of points, representing what we will refer
to as the “left” and “right” substreamlines. Each streamline
can thus be said to have a “left length”, N1—the number of
points on its left side, excluding the seed point itself—and a
“right length”, N2. Here the names left and right are used for
convenience only, and have no strict significance.

In order to be able to model single streamlines and distri-
butions of probabilistic streamlines in the same way, we must
first find a single line, in the latter case, which epitomises the
shape of the whole set of lines. We do this by calculating a
median streamline whose left and right lengths, Ñ1 and Ñ2,
are the ξ-quantiles of the individual streamline lengths, where
ξ is a parameter to be chosen. (For ξ = 0.9, for example,
distal spatial information would be discarded from the longest
10% of streamlines.) Then, beginning at the seed point and
moving outwards in each direction in turn, the x, y and z
components of the median point location are calculated at each
step from all unterminated streamlines. The resultant set of
median points is a single line tract representation r = {xi},
where i ∈ {−Ñ1,−Ñ1 +1, . . . , Ñ2− 1, Ñ2} and the point x0

is the seed point.
Unlike in the individual streamlines, where each step is of

a fixed distance in the native space of the subject, the median
line, as a composite streamline, is not in general made up
of equally spaced points. However, the real world length of
this piecewise linear median line can be easily calculated by
summing the actual point spacings.

Finally, the path of the median tract is represented in
terms of a three dimensional cubic B-spline curve [22],
parameterised by the distance along the median line, t. For
any uniform cubic B-spline with K knots in total, there are

Fig. 1. Graphical representation of a full set of probabilistic streamlines
(grey), the median line and B-spline knot points (black), here projected into
a plane normal to the superior–inferior (z) axis. ξ = 0.99. The seed point is
indicated with an arrow.

κ = K−8 equally spaced internal knots; and in this case they
are arranged so that one of them falls on the seed point. The
final tract parameterisation then becomes

r(t) =
K−3∑

j=0

pjBj(t) , (1)

where Bj are the cubic B-spline basis functions and pj are
the corresponding control point vectors.

The free parameter, K, is not chosen directly. Instead, the
control point coefficients are calculated for the reference tract
data using a model with one internal knot (i.e. κ = 1, K = 9),
and the residuals, ρi, at each point, i, on the median line are
used to calculate the residual standard error, according to

Eκ =

√ ∑
i ρ 2

i

Ñ1 + Ñ2 − κ− 3
. (2)

(The denominator of Eq. (2) represents the residual degrees
of freedom, which is affected by the number of points on the
median line and the number of internal knots.) The number
of knots is then incremented and the residual standard error
recalculated until the mean of the three components of Eκ

is less than some threshold value, η. The knot separation
distance for this fit is then fixed for each candidate tract, so
the number of knot points in each case depends on—and is
uniquely determined by—the length of each median line.

Fig. 1 demonstrates the process described above. A set of
5000 probabilistic streamlines is shown in grey: these represent
all of the information about the connectivity distribution
provided by the tractography algorithm for a single seed point.
The black line represents the median, and the black filled
circles represent the B-spline knot points in the final tract
parameterisation. Note that, although we favour methods that
produce a distribution of streamlines due to the greater amount
of information they provide about spatial uncertainty, if a trac-
tography algorithm had been used that generates only a single
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streamline for each seed point, then calculating the median line
would be unnecessary, but the B-spline parameterisation would
still be valid. This parameterisation is used in order to reduce
the dimensionality of the data and emphasise topological tract
features at a scale that is not determined by voxel dimensions.

B. Matching model
With the reference and candidate tracts represented as a

series of B-spline knot points as described in the previous
section, we can now define a model for the relationships
between tracts. We consider a finite set of candidate tracts,
among which there is assumed to be a single tract that best
matches the reference tract, which has been chosen in advance.
We introduce a variable, m, which can take any value in
{1, 2, . . . , N}, where N is the number of candidate tracts
in the set, to indicate that the corresponding tract is the
best match. Given a set of data, D, describing the group
of candidate tracts, we wish to establish a model for the
distribution P (m |D); and hence to find the most likely value
of m.

For a tract, i, which has L1 internal knot points on its left
side and L2 knots on its right side (excluding the seed point
in each case), consider the vectors that link successive knots
together such that they are always directed away from the seed
point. We denote these vectors vi

u, where u indexes location in
the tract such that it is negative on the left side and positive on
the right side. The cosine of the angle between a contiguous
pair of these vectors is given by

ci
u = cos θi

u =
vi

u · wi
u

‖vi
u‖ ‖wi

u‖
(3)

where ‖ · ‖ is the usual Euclidean norm and

wi
u =






vi
u+1 if u < −1

−vi
−u if u = ±1

vi
u−1 if u > 1.

(4)

These continuity angles give an indication of the local curva-
ture of the tract.

Similarly, by introducing the notation v∗u for the uth vector
in the reference tract, we can describe another cosine value,

si
u = cos φi

u =
vi

u · v∗u
‖vi

u‖ ‖v∗u‖
, (5)

which indicates the local directional similarity between the
reference and candidate tracts.

Fig. 2 illustrates, in two dimensions, the continuity angles,
θu, and the similarity angles, φu. Since the cosine function is
a priori uniform for random 3D vectors, we model the cosines
of these angles—as described by Eqs (3) and (5)—rather than
directly modelling the angles themselves.

The tract data that are relevant to our matching model are
its continuity and similarity cosines and its left and right
lengths: di = (Li

1, L
i
2, ci, si), where ci = (ci

u) and si =
(si

u). The full data set, D, then contains all the di plus
the left and right lengths of the reference tract, L∗1 and L∗2.
The principle of the model is that in regions where there is
directionality information available from the reference tract,
that information should provide the best predictor for the

!2
!1

v
-1

v
-2

— reference

— candidate !1

Fig. 2. Illustration of the different angles relevant to our model. Filled circles
here represent successive knot points in the reference and candidate tracts. The
ringed knot is the seed point, which is common to the two tracts.

direction of a matching candidate tract. If the candidate tract
is longer than the reference tract, however, then in the region
beyond the end of the reference, the only predictor of the
tract’s direction at any given step is its direction at the previous
step. Hence, the full matching model is given by

P (m= i |D) ∝ P (Li
1 |L∗1) P (Li

2 |L∗2)

×
Ľi

1∏

u=1

P (si
−u)

Ľi
2∏

u=1

P (si
u)

×
Li

1∏

u=Ľi
1+1

P (ci
−u)

Li
2∏

u=Ľi
2+1

P (ci
u) , (6)

where Ľi
1 = min{Li

1, L
∗
1}, and equivalently for Ľi

2. The
inclusion of the continuity cosine distributions expresses a
preference for candidates that are not atypical in their curva-
ture in regions unconstrained by the reference tract; it thus
provides some assurance of “tract quality”. It is implicitly
assumed here that all unmatched tracts are equiprobable. The
constant of proportionality in Eq. (6) is given by normalising
over all values of i.

There are some constraints that can be applied to this model
in order to reduce the number of parameters that need to be
estimated. To this end, we assume that the curvature properties
of tracts do not vary along their length, implying that all
continuity cosines are drawn from a single distribution. We
cannot, however, assume the same for the similarity cosines:
Fig. 1 demonstrates that there is generally far more spatial
uncertainty—as shown by the spread of the streamline set—
near the ends of tracts than there is near the middle, so
considerable local deviation from the reference tract can be
expected near the ends of even well-matched candidate tracts.
Hence, we make the weaker assumption that there is no
inherent difference between the left and right sides of the
tract, with distributions over similarity cosines varying only
with distance from the seed point. That is,

P (ci
u) = P (ci

v) = P (c) ∀u, v, i
P (si

u) = P (si
−u) = P (su) ∀u>0, i.

(7)

We must finally give specific forms for the distributions in
Eq. (6). The length distributions are modelled as regularised
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multinomial distributions, subject to a maximum length cutoff,
while the cosine distributions are modelled as single-parameter
beta distributions with a uniform regularisation component
(see Appendix). That is,

P (c) = ε + (1− ε) α cα−1 , (8)

and equivalently for each P (su) distribution. The parameter
ε is expected to be small, but since the beta distribution
component will assign extremely tiny probabilities to large
angles, it is needed to ensure that Eq. (6) does not grossly
underestimate matching probabilities when larger angles do
occur.

III. PARAMETER FITTING

Diffusion MRI data from six healthy volunteers were
used for this study. The dMRI acquisition protocol has
been described previously [21]. Briefly, it uses 51 non-
collinear diffusion weighting gradient directions at a b-value
of 1000 s mm−2, plus 3 T2-weighted volumes. In-plane
resolution was 1.72×1.72 mm, and the slice thickness was
2.8 mm. Subjects were scanned up to three times. Each
volume was preprocessed to remove skull data and eddy
current induced artefacts using FMRIB Software Library tools
(FMRIB, Oxford, UK; [23]).

For the purposes of this study, the white matter structures
of interest were the corpus callosum splenium and corti-
cospinal tract. All tracts were generated using the BED-
POST/ProbTrack algorithm [5] with its default parameters.
The result was a set of 5000 probabilistic streamlines for each
tract, with a fixed separation distance of 0.5 mm between
successive points. Median lines were then calculated using
ξ=0.99, and transformed into the space of the reference tract
by using the FLIRT algorithm [24] to register together T2-
weighted (b = 0) volumes from each scan. Using a residual
error threshold, η, of 0.1 mm, the B-spline parameterisation
was calculated for the splenium reference tract, and all candi-
date tract splines were fitted using the resulting knot separation
distance of 6.1 mm. If any pair of successive median line
points were more than this distance apart, the median line
was truncated to avoid creating multiple knots (which would
result in discontinuities in the spline).

In addition to the reference, nine other splenium tracts
were chosen by hand from different brain volumes to form a
training set of matching tracts, and the parameters of the model
pertaining to the length and similarity cosine distributions were
fitted using maximum likelihood (see Appendix). Specifically,
three splenium tracts were taken from subject 1, two from
subject 2, two from subject 3, and one each from subjects
4 and 5. The reference tract was taken from a third scan of
subject 2. No more than one training tract was taken from any
given scan. The continuity cosine distribution, P (c), was fitted
from 50 tracts generated by seeding randomly in a single brain
volume, subject to an anisotropy threshold used to ensure that
each seed point was in white matter. This policy is appropriate
given the assumption that the continuity properties of all tracts
are broadly similar, and it has the significant advantage of
increasing the quantity of training data available.
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Fig. 3. Histograms of rescaled continuity cosines (a; n=962) and similarity
cosines for u=7 (b; n=18) from the splenium training data. The appropriate
density functions from the model are overlaid.

Fig. 3 shows histograms of the cosine distributions, P (c)
and P (su)—the latter for a sample value of u. In (a), there
are data from the full domain of cosine values, and the final
estimate for ε reflects this. In (b), however, there are no cosine
data below 0.9, and so the ε parameter has shrunk to zero.
In fact, all of the similarity cosine distributions had ε = 0,
although the α parameter—which affects the steepness of
the right hand sides of the distributions—varied considerably,
being 112.6 for u=1 and only 6.1 for u=14, the largest value
of u for which a distribution was defined.

The whole process was applied in the same manner for the
corticospinal tract, using an appropriate reference. The model
parameters were retrained for this case, using a training set of
five tracts.

IV. APPLICATION

Having used the training data to learn its parameters, the
model described by Eq. (6) represents a way of assessing
a set of novel tracts for their respective similarities to the
reference tract. In order to create such a set, the seed point
used to generate the reference tract was transferred to a
new brain volume, from which no training data had been
taken. Tractography was then performed for all points within
a 7×7×7 voxel region centred at this location, subject to
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an anisotropy threshold, and each candidate seed point was
processed as follows.

1) Run the tractography algorithm and recover a set of
probabilistic streamlines.

2) Calculate the median line and transform it into the space
of the reference tract as described above.

3) Using the knot spacing chosen for the reference tract,
fit a cubic B-spline along the median line.

4) Calculate continuity and similarity angles for the inter-
knot vectors, as depicted in Fig. 2.

5) Evaluate the right hand side of Eq. (6) using the length
and angle distributions fitted from the training data.

This allows us to select the “best” seed point a posteriori by
finding the starting location which generates the best-matching
tract.

Using this size of neighbourhood, the runtime of the algo-
rithm to choose a single tract is around four hours on a single-
core Intel Xeon 3.2 GHz based workstation, the vast majority
of which is spent running the tractography algorithm and
collating the results. Fitting the B-spline model and evaluating
the likelihood takes less than a second per candidate seed
point. However, the process is presently implemented in R,
an interpreted statistics and data analysis language [25], and
so we expect that reimplementing the method in a compiled
language such as C would provide significant speed benefits.
Moreover, candidate tracts can be generated in parallel since
they have no interdependence.

In order to test the robustness of the method to small differ-
ences in the reference tract, the corpus callosum reference was
substituted for its equivalent taken from a different scan of the
same subject (see Fig. 4). These two tracts do, of course, rep-
resent the same physical fasciculus, imaged in two consecutive
scans. The model parameters were then recalculated for this
alternative reference tract, and the experiment was repeated.

Since there is no normalisation or standardisation of match-
ing probabilities between different sets of candidate tracts,
these values are not directly comparable between data sets or
reference tracts. They simply represent the probability of each
candidate tract matching the given reference relative to the
other candidates. There is no guarantee that the most likely
match is a good match in any absolute sense. In order to
provide an indication of absolute goodness-of-match, the log-
ratio between the matching likelihood (the right hand side of
Eq. (6)) of the best match and the matching likelihood of the
reference tract to itself was calculated.

V. RESULTS

Fig. 4 shows the results of applying the model to tract—and
hence seed point—selection. In this figure, all tracts are shown
as maximum intensity projections; splenium tracts in a plane
normal to the superior–inferior (z) axis, and corticospinal
tracts normal to the left–right (x) axis. These perspectives
are used because they show the two axes of greatest spatial
variation and highlight the most common gross reconstruction
inconsistencies in each case. Each tract is shown colour-coded
according to the proportion of probabilistic streamlines that
pass through each image voxel, thresholded at the 1% level.

reference (a) 0.952 (b) 0.018 (c) 4.88 x 10-48

reference (d) 0.959 (e) 0.037

100%

1%

reference (f) 0.434 (g) 0.426 (h) 6.71 x 10-206

50%

Fig. 4. The two most likely matches to the original (top row) and the
alternative splenium reference tract (middle row), shown in axial projection
with their associated matching probabilities. The tract generated from the
neighbourhood centre point is shown with its matching probability (c), for
comparison. Results for the corticospinal tract, in sagittal projection, are
shown in the bottom row. It should be remembered that tracts (a)–(h) are taken
from different subjects to the reference tracts. Colours represent the proportion
of probabilistic streamlines passing through each voxel, as indicated by the
colour bar.

(This threshold is approximately equivalent to the use of
ξ=0.99 above in calculating the median line.) The underlying
greyscale image in each case is the anisotropy map slice in-
plane with the seed point.

According to the model, tracts (a) and (b) are the two most
likely matches to the reference tract adjacent to them. The
point at the centre of the seeding neighbourhood generated
tract (c), which is visually far less similar to the reference
tract. Its matching probability is commensurately smaller, by
many orders of magnitude, than those for (a) and (b). The
candidate set contained 220 tracts in total, after thresholding
on anisotropy.

For comparison, tracts (d) and (e) are the two best-matching
tracts from the same neighbourhood, using the alternative
reference tract. In this case the model parameters were re-
learned, but the knot separation distance under this very similar
reference tract was only slightly smaller than the old one, at
6.0 mm. Tracts (a) and (d) are in fact the same tract, so the
most likely match is the same with both reference tracts.

Similarly, tracts (f) and (g) are much better matches to the
corticospinal reference tract than the tract generated from the
centre seed, (h). Once again the matching probabilities reflect
this.

Fig. 5 shows the results of calculating log-ratios using the
original reference tract for the splenium. The more negative
this log-ratio, the less good a fit is compared to the “bench-
mark” of the reference tract itself.
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reference (a) -2.1 (b) -12.3 (c) -121.2

Fig. 5. Log-ratios between matching likelihoods of the tracts shown and
the matching likelihood of the reference tract. The reference tract has a log-
ratio of zero by definition; (a) is the alternative reference tract; (b) is the
best match in the novel candidate set; and (c) is the tract generated from the
neighbourhood centre point.

VI. DISCUSSION

In this work, we have presented a probabilistic model-
based approach to white matter tract segmentation from dMRI
data sets. We have described a tract similarity model, based
on shape and length, which has no specific dependence on
any particular tractography algorithm. We have demonstrated
the use of the algorithm to select the best matching tract
from a set of candidates, and described how a log-ratio can
be used to quantify goodness-of-match in a manner that is
comparable between data sets. The method has been shown to
be apt for selecting matches for two example fasciculi of very
different shapes. Taken together, this work represents a novel
way of automatically selecting single seed points for robust
segmentation of tracts of interest in groups.

The success of our approach does of course depend on it
being possible to consistently segment a tract of interest with
single seed points; and there is no guarantee that this will be
possible for all scans or all tracts. However, with the recent
development of tractography algorithms that can model more
than one fibre orientation at each voxel (e.g. [7], [12], [13],
[26]) it should become less likely for there to be no suitable
match; and, ultimately, the log-ratio demonstrated in Fig. 5
can be used to reject tracts that match very badly.

We note that the training set for the splenium tract included
tracts from different scans of the test subject. We do not regard
this as problematic since interscan variability is as much of
interest as intersubject variability, and since the reference tract
itself was taken from a different subject. Nevertheless, in case
this be seen as a source of bias, we avoided taking any training
data for the corticospinal tract from the test subject.

Compared to the simpler methods of placing single seed
points by hand or using image-registration-based transforma-
tion, our method offers advantages with respect to consistency
and reproducibility. Figs 4(c) and 4(h) were generated by
using registration to transfer the seed point from the reference
image, and it can be seen that the results are highly dissimilar
to the reference tracts, and so this approach is insufficient
to achieve consistency in segmentation. By contrast, the best
matches under our model—shown in Figs 4(a), 4(d) and 4(f)
for the three test cases—much more closely resemble their
respective reference tracts. Even using anatomical landmarks
for guidance, placing seed points by hand is subjective and
hence has limited reproducibility [27]. On the other hand,

reference tracts can be directly transferred between studies
without modification; and since there is no need for observer
interaction, presentation of an identical data set to the method
described above will always yield an identical result.

The use of ROIs to constrain the paths that probabilistic
streamlines may take [15], [16] is not precluded by our
method. Indeed, a two-ROI constraint could be applied to
ameliorate one of the limitations of our model: the median line
cannot represent branches in the streamline set and therefore
the model does not take them into account. Nevertheless,
the similarity “preference” that our model imposes is a far
weaker constraint than the two-ROI constraint, and since both
use a priori knowledge about the tract of interest to affect
a reconstruction process that should be primarily driven by
the actual data, we would argue that the weaker constraint is
preferable where possible.

The present model-based approach to assessing tract similar-
ity also has advantages over the heuristic method described in
[21]. The first benefit is a general matter of principle: explicitly
describing a tract matching model and its assumptions makes
the method more scrutable than otherwise. Secondly, and more
substantially, the median line representation of a tract can
undergo affine transformation without complications; whereas
the previously used field representation of a tract cannot
be transformed without creating interpolation issues. This
is helpful because it allows us to easily correct for gross
head size or rotation differences between the reference and
candidate tracts using standard affine image registration—as
we have done above. Thirdly, the results from our previous
approach to tract matching were quite strongly affected by the
particular nature of the reference tract, and had a very narrow
dynamic range. By contrast, Fig. 4 demonstrates that two very
similar reference tracts do produce comparable—although not
identical—results under the current model, while the matching
probabilities assigned to dissimilar candidate tracts vary by
orders of magnitude. Tracts (a), (b), (d) and (e) all represent
appropriate matches to either splenium reference tract, and the
fact that the best match under the original reference tract was
also the best match under the alternative reference, out of a set
of more than 200 candidates, (whilst not conclusive evidence)
does suggest a beneficial lack of sensitivity to small alterations
in the reference tract.

Our model does have limitations, however. It has already
been mentioned that the median line representation ignores
branches in the original set of streamlines; and as a result,
the model cannot discriminate against such tracts, which may
be considered desirable. This, of course, will not be an issue
in cases where the tractography algorithm produces a single
streamline representation of a tract. Secondly, the nature of
Eq. (6) is such that the reference tract itself does not have
the highest possible matching likelihood, and so the log-
ratio calculated in Fig. 5 could be positive for some tracts.
Moreover, since there is very little training data available
for the length distributions, and so they are heavily affected
by their regularisation terms, they do not fully compensate
for the likelihood-increasing effects of the continuity cosines
in very long tracts. Additionally, of course, any limitations
and sensitivities to data quality that the chosen tractography
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algorithm may have will apply in turn to our method.
Consistent and reproducible segmentation of tracts is a

prerequisite for clinical and neurological studies that use dMRI
data sets and need to focus their attentions on specific white
matter structures (e.g. [14]). As a result, consistency is our
primary concern in this work, and we focus on this aim rather
than attempting to segment the entire width of the tract in
each brain. Tract segmentation may have a significant part
to play in future developments in the theory of the connective
architecture of the brain. A suitably rich model of the relation-
ships between the topologies of comparable tracts in different
subjects has the potential to be informative in its own right, as
well as leading naturally, as we have described, to a method
for choosing seed points for segmentation. In future work,
alternative tract representations could be considered in order
to handle branches in streamline sets; and the limitations on the
current method due to the small size of the training set could
be alleviated by using an unsupervised learning approach.
There are also other possibilities for this kind of topological
modelling: for example, probabilistic model selection could
perhaps be used to classify tracts into “normal” and “distorted”
groups in pathological scenarios where the topology of white
matter structures is adversely affected.

APPENDIX

The distributions over cosines are modelled as a mixture of
a beta distribution with a uniform regularisation component.
The beta distribution has the general p.d.f.

P (x |α,β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1− x)β−1 , (9)

where Γ(·) is the gamma function. However, since small angles
are always assumed to be the most common, we can fix β=1
in each case, leaving α and the mixture coefficient, ε, as the
only unknown parameters. The distribution is then

P (x |α, ε) = ε + (1− ε) α xα−1 . (10)

It is defined only for x ∈ [0, 1] (being zero for all other values
of x), so we rescale our cosine values into this interval.

In order to find maximum likelihood estimates for α and ε
given some data vector of rescaled cosine values, x, we use a
simple Expectation–Maximisation algorithm. Associated with
each data value, xj , is a latent variable, zj , indicating whether
the value came from the uniform distribution (zj = 0) or the
beta distribution (zj =1).

Given some starting estimates for the distribution parame-
ters, α̂ and ε̂, the E-step of the algorithm calculates

P (zj =0 |xj) =
ε̂

ε̂ + (1− ε̂) α̂ x α̂−1
j

(11)

and

P (zj =1 |xj) =
(1− ε̂) α̂ x α̂−1

j

ε̂ + (1− ε̂) α̂ x α̂−1
j

(12)

for each value of j. The M-step then updates the parameter
estimates according to

α̂ =
−

∑
j P (zj =1 |xj)∑

j P (zj =1 |xj) lnxj
(13)

and
ε̂ =

P (zj =0 |xj)
P (zj =0 |xj) + P (zj =1 |xj)

, (14)

and the algorithm repeats until convergence.
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